File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

박노정

Park, Noejung
Computational Physics & Electronic Structure Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 13 -
dc.citation.startPage 1 -
dc.citation.title JOURNAL OF CATALYSIS -
dc.citation.volume 381 -
dc.contributor.author Lee, Daewon -
dc.contributor.author Kim, Youngmin -
dc.contributor.author Kim, Hyun Woo -
dc.contributor.author Choi, Min -
dc.contributor.author Park, Noejung -
dc.contributor.author Chang, Hyunju -
dc.contributor.author Kwon, Youngkook -
dc.contributor.author Park, Jong Hyeok -
dc.contributor.author Kim, Hyung Ju -
dc.date.accessioned 2023-12-21T18:10:10Z -
dc.date.available 2023-12-21T18:10:10Z -
dc.date.created 2020-01-08 -
dc.date.issued 2020-01 -
dc.description.abstract Designing and preparing highly active and stable nanostructured Pt-based catalysts with ultralow Pt loading are still challenging for electrochemical applications such as water electrolysis and fuel cells. Here we report for the first time an in situ electrochemical process to synthesize Pt-MoO3-x nanoflakes (NFs) overgrown on commercial bulk MoS2 by employing a facile and simple electrochemical method without using any expensive precious metal salts. The overgrowth of Pt-MoO3-x NFs on the bulk MoS2 surface is conducted by applying electrical energy to the bulkMoS(2) and using Pt counter electrode dissolution in an acidic solution. In spite of their 10 times lower Pt loadings compared to commercial Pt black (Alfa Aesar), the synthesized Pt-MoO3-x NFs demonstrate excellent catalytic performance with a Ptmass activity of 2.83 A/mg(Pt) at the overpotential of 100 mV for electrochemical hydrogen evolution reaction (HER), an approximately 4 times higher value than the value of 0.76 A/mg(Pt) at the overpotential of 100 mVfor commercial Pt black. We hypothesize that the outstanding HER characteristics of Pt-MoO3-x NFs are related to the existence and increase of Pt-MoO3 interfacial sites and oxygen vacancy sites such as Mo5+ in the Pt-MoO3-x NF structures. In addition, our density functional theory (DFT) calculations demonstrate that Pt and O sites at Pt and MoO3 interfaces and O sites at defective MoO3-x in the Pt-MoO3-x NFs contribute to accelerate the HER. (C) 2019 Elsevier Inc. All rights reserved. -
dc.identifier.bibliographicCitation JOURNAL OF CATALYSIS, v.381, pp.1 - 13 -
dc.identifier.doi 10.1016/j.jcat.2019.10.027 -
dc.identifier.issn 0021-9517 -
dc.identifier.scopusid 2-s2.0-85074667442 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/30756 -
dc.identifier.url https://www.sciencedirect.com/science/article/pii/S0021951719305366?via%3Dihub -
dc.identifier.wosid 000525488500001 -
dc.language 영어 -
dc.publisher ACADEMIC PRESS INC ELSEVIER SCIENCE -
dc.title In situ electrochemically synthesized Pt-MoO3-x nanostructure catalysts for efficient hydrogen evolution reaction -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Engineering, Chemical -
dc.relation.journalResearchArea Chemistry; Engineering -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Molybdenum based catalysts -
dc.subject.keywordAuthor Electrochemical synthesis -
dc.subject.keywordAuthor Hydrogen evolution reaction -
dc.subject.keywordAuthor Nanoflakes -
dc.subject.keywordAuthor Pt-MoO3 interfacial sites -
dc.subject.keywordAuthor Oxygen vacancies -
dc.subject.keywordPlus ELECTROCATALYTIC GLYCEROL OXIDATION -
dc.subject.keywordPlus HIGHLY-ACTIVE ELECTROCATALYST -
dc.subject.keywordPlus MOLYBDENUM-DISULFIDE -
dc.subject.keywordPlus MOS2 NANOSHEETS -
dc.subject.keywordPlus THIN-FILMS -
dc.subject.keywordPlus EPITAXIAL-GROWTH -
dc.subject.keywordPlus DOPED CARBON -
dc.subject.keywordPlus BASAL-PLANE -
dc.subject.keywordPlus EDGE SITES -
dc.subject.keywordPlus NANOPARTICLES -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.