BROWSE

Related Researcher

Author's Photo

Baek, Jong-Beom
Center for Dimension-Controllable Organic Frameworks
Research Interests
  • Covalent Organic Frameworks (COFs), Carbon Nanotubes(CNTs), graphene, Energy Conversion and Storage

ITEM VIEW & DOWNLOAD

Iron encased organic networks with enhanced lithium storage properties

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Iron encased organic networks with enhanced lithium storage properties
Author
Huang, ChunmaoMahmood, JaveedZhang, JiakuiZhu, ZiheChen, DongdongChen, PeirongNoh, Hyuk‐JunAhmad, IshfaqXu, JiantieBaek, Jong‐Beom
Issue Date
2019-11
Publisher
Wiley
Citation
ENERGY STORAGE
Abstract
Developing promising electrode materials for next‐generation high performance lithium ion batteries (LIBs) become critically important. So far, a great number of transition metal (M)‐based composites (e.g., oxides, sulfides, selenides and M‐carbon) as promising anodes have been intensively reported. Despite the huge progress achieved developing M‐nitrogen‐doped carbon (M‐N‐C) as catalysts in the field of electrocatalysis, the study of M‐N coordination sites, and how they might affect the anode properties of M‐N‐C for LIBs, is still rare. Here, we designed and fabricated a series of Fe‐N‐C hybrids as anodes for LIBs, including iron (Fe) nanoparticles cores encapsulated in well‐defined nitrogenated holey graphitic structures (Fe@C2N) and Fe encapsulated in a three‐dimensional cage‐like organic network (Fe@CON). Such hybrids displayed promising lithium ion storage properties. In particular, benefitting from its 3D interconnected microporous structure and rich Fe‐N‐C species, one Fe@CON (e.g., HCF@3DP) exhibited a superb reversible capacity of 747.3 mAh g−1 at 0.1 C, excellent rate capability (e.g., 320.8 mAh g−1 at 10 C) and long cycling stability (over 400 cyles).
URI
https://scholarworks.unist.ac.kr/handle/201301/30733
URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/est2.114
DOI
10.1002/est2.114
ISSN
2578-486
Appears in Collections:
ECHE_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU