File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

송현곤

Song, Hyun-Kon
eclat: electrochemistry lab of advanced technology
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.startPage 2364 -
dc.citation.title NATURE COMMUNICATIONS -
dc.citation.volume 10 -
dc.contributor.author Song, Gyujin -
dc.contributor.author Cheong, Jun Young -
dc.contributor.author Kim, Chanhoon -
dc.contributor.author Luo, Langli -
dc.contributor.author Hwang, Chihyun -
dc.contributor.author Choi, Sungho -
dc.contributor.author Ryu, Jaegeon -
dc.contributor.author Kim, Sungho -
dc.contributor.author Song, Woo-Jin -
dc.contributor.author Song, Hyun-Kon -
dc.contributor.author Wang, Chongmin -
dc.contributor.author Kim, Il-Doo -
dc.contributor.author Park, Soojin -
dc.date.accessioned 2023-12-21T19:09:39Z -
dc.date.available 2023-12-21T19:09:39Z -
dc.date.created 2019-06-17 -
dc.date.issued 2019-05 -
dc.description.abstract Alloys are recently receiving considerable attention in the community of rechargeable batteries as possible alternatives to carbonaceous negative electrodes; however, challenges remain for the practical utilization of these materials. Herein, we report the synthesis of germanium-zinc alloy nanofibers through electrospinning and a subsequent calcination step. Evidenced by in situ transmission electron microscopy and electrochemical impedance spectroscopy characterizations, this one-dimensional design possesses unique structures. Both germanium and zinc atoms are homogenously distributed allowing for outstanding electronic conductivity and high available capacity for lithium storage. The as-prepared materials present high rate capability (capacity of similar to 50% at 20 C compared to that at 0.2 C-rate) and cycle retention (73% at 3.0 C-rate) with a retaining capacity of 546 mAh g(-1) even after 1000 cycles. When assembled in a full cell, high energy density can be maintained during 400 cycles, which indicates that the current material has the potential to be used in a large-scale energy storage system. -
dc.identifier.bibliographicCitation NATURE COMMUNICATIONS, v.10, pp.2364 -
dc.identifier.doi 10.1038/s41467-019-10305-x -
dc.identifier.issn 2041-1723 -
dc.identifier.scopusid 2-s2.0-85066608469 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/30724 -
dc.identifier.url https://www.nature.com/articles/s41467-019-10305-x -
dc.identifier.wosid 000469421100001 -
dc.language 영어 -
dc.publisher NATURE PUBLISHING GROUP -
dc.title Atomic-scale combination of germanium-zinc nanofibers for structural and electrochemical evolution -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Multidisciplinary Sciences -
dc.relation.journalResearchArea Science & Technology - Other Topics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus NITROGEN-DOPED CARBON -
dc.subject.keywordPlus ION BATTERY ANODES -
dc.subject.keywordPlus HIGH-CAPACITY -
dc.subject.keywordPlus LIFE ANODE -
dc.subject.keywordPlus LITHIUM -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus GE -
dc.subject.keywordPlus NANOTUBES -
dc.subject.keywordPlus NANOCOMPOSITE -
dc.subject.keywordPlus PARTICLES -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.