File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

강석주

Kang, Seok Ju
Smart Materials for Energy Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 6 -
dc.citation.startPage 1907903 -
dc.citation.title ADVANCED FUNCTIONAL MATERIALS -
dc.citation.volume 30 -
dc.contributor.author Yoon, Moonsu -
dc.contributor.author Dong, Yanhao -
dc.contributor.author Yoo, Youngbin -
dc.contributor.author Myeong, Seungjun -
dc.contributor.author Hwang, Jaeseong -
dc.contributor.author Kim, Junhyeok -
dc.contributor.author Choi, Seong-Hyeon -
dc.contributor.author Sung, Jaekyung -
dc.contributor.author Kang, Seok Ju -
dc.contributor.author Li, Ju -
dc.contributor.author Cho, Jaephil -
dc.date.accessioned 2023-12-21T18:07:49Z -
dc.date.available 2023-12-21T18:07:49Z -
dc.date.created 2019-12-06 -
dc.date.issued 2020-02 -
dc.description.abstract A practical solution is presented to increase the stability of 4.45 V LiCoO2 via high-temperature Ni doping, without adding any extra synthesis step or cost. How a putative uniform bulk doping with highly soluble elements can profoundly modify the surface chemistry and structural stability is identified from systematic chemical and microstructural analyses. This modification has an electronic origin, where surface-oxygen-loss induced Co reduction that favors the tetrahedral site and causes damaging spinel phase formation is replaced by Ni reduction that favors octahedral site and creates a better cation-mixed structure. The findings of this study point to previously unspecified surface effects on the electrochemical performance of battery electrode materials hidden behind an extensively practiced bulk doping strategy. The new understanding of complex surface chemistry is expected to help develop higher-energy-density cathode materials for rechargeable batteries. -
dc.identifier.bibliographicCitation ADVANCED FUNCTIONAL MATERIALS, v.30, no.6, pp.1907903 -
dc.identifier.doi 10.1002/adfm.201907903 -
dc.identifier.issn 1616-301X -
dc.identifier.scopusid 2-s2.0-85075716461 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/30672 -
dc.identifier.url https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201907903 -
dc.identifier.wosid 000499279800001 -
dc.language 영어 -
dc.publisher WILEY-V C H VERLAG GMBH -
dc.title Unveiling Nickel Chemistry in Stabilizing High-Voltage Cobalt-Rich Cathodes for Lithium-Ion Batteries -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.type.docType Article; Early Access -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor cathode degradation -
dc.subject.keywordAuthor cathode-electrolyte interphase -
dc.subject.keywordAuthor Co-rich cathode -
dc.subject.keywordAuthor lithium-ion batteries -
dc.subject.keywordAuthor surface reactivity management -
dc.subject.keywordPlus ELECTRICAL ENERGY-STORAGE -
dc.subject.keywordPlus ELECTROCHEMICAL PROPERTIES -
dc.subject.keywordPlus FLUORINATED ELECTROLYTES -
dc.subject.keywordPlus PHASE-TRANSITION -
dc.subject.keywordPlus LICOO2 -
dc.subject.keywordPlus INTERFACE -
dc.subject.keywordPlus SURFACE -
dc.subject.keywordPlus DEGRADATION -
dc.subject.keywordPlus BEHAVIOR -
dc.subject.keywordPlus ETHYLENE CARBONATE ELECTROLYTES -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.