File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 3092 -
dc.citation.number 17 -
dc.citation.startPage 3086 -
dc.citation.title JOURNAL OF PHYSICAL CHEMISTRY LETTERS -
dc.citation.volume 5 -
dc.contributor.author Kim, Haegyeom -
dc.contributor.author Seo, Dong-Hwa -
dc.contributor.author Yoon, Gabin -
dc.contributor.author Goddard, William A., III -
dc.contributor.author Lee, Yun Sung -
dc.contributor.author Yoon, Won-Sub -
dc.contributor.author Kang, Kisuk -
dc.date.accessioned 2023-12-22T02:11:07Z -
dc.date.available 2023-12-22T02:11:07Z -
dc.date.created 2019-12-03 -
dc.date.issued 2014-09 -
dc.description.abstract Herein, we explore the capacity degradation of dilithium rhodizonate salt (Li2C6O6) in lithium rechargeable batteries based on detailed investigations of the lithium de/insertion mechanism in Li2C6O6 using both electrochemical and structural ex situ analyses combined with first-principles calculations. The experimental observations indicate that the LixC6O6 electrode undergoes multiple two-phase reactions in the composition range of 2 <= x <= 6; however, the transformations in the range 2 <= x <= 4 involve a major morphological change that eventually leads to particle exfoliation and the isolation of active material. Through firstprinciples analysis of LixC6O6 during de/lithiation, it was revealed that particle exfoliation is closely related to the crystal structural changes with lithium deinsertion from C6O6 interlayers of the LixC6O6. Among the lithium ions found at various sites, the extraction of lithium from C6O6 interlayers at 2 <= x <= 4 decreases the binding force between the C6O6 layers, promoting the exfoliation of C6O6 layers and pulverization at the electrode, which degrades capacity retention. -
dc.identifier.bibliographicCitation JOURNAL OF PHYSICAL CHEMISTRY LETTERS, v.5, no.17, pp.3086 - 3092 -
dc.identifier.doi 10.1021/jz501557n -
dc.identifier.issn 1948-7185 -
dc.identifier.scopusid 2-s2.0-84925389527 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/30534 -
dc.identifier.url https://pubs.acs.org/doi/10.1021/jz501557n -
dc.identifier.wosid 000341337400030 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title The Reaction Mechanism and Capacity Degradation Model in Lithium Insertion Organic Cathodes, Li2C6O6, Using Combined Experimental and First Principle Studies -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Atomic, Molecular & Chemical -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus HIGH-POWER -
dc.subject.keywordPlus ELECTRODE MATERIALS -
dc.subject.keywordPlus PHASE-TRANSITION -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus OXIDE -
dc.subject.keywordPlus NANOWIRES -
dc.subject.keywordPlus BATTERIES -
dc.subject.keywordPlus COMPOUND -
dc.subject.keywordPlus POLYMERS -
dc.subject.keywordPlus LIFEPO4 -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.