File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 1798 -
dc.citation.number 6 -
dc.citation.startPage 1790 -
dc.citation.title ENERGY & ENVIRONMENTAL SCIENCE -
dc.citation.volume 8 -
dc.contributor.author Kim, Jae Chul -
dc.contributor.author Seo, Dong-Hwa -
dc.contributor.author Ceder, Gerbrand -
dc.date.accessioned 2023-12-22T01:08:39Z -
dc.date.available 2023-12-22T01:08:39Z -
dc.date.created 2019-12-03 -
dc.date.issued 2015-06 -
dc.description.abstract Simple borates are attractive cathodes for lithium-ion batteries due to two main reasons: covalently bonded anions provide operating stability through suppressed oxygen loss, and the borate group (BO3) possesses the highest theoretical specific capacity for one-electron polyanion systems. In this work, we demonstrate an electrochemically superior lithium borate (LiMn0.5Fe0.4Mg0.1BO3) that delivers a near theoretical capacity (98%) of 201 mA h g(-1) at C/50, an improved rate capability of 120 mA h g(-1) at 1 C, and good capacity retention. Using ab initio modeling, the superior Li intercalation activity is explained by both stabilization of the delithiated state and increased topological cation disorder, which counter-intuitively facilitates Li transport. Our results indicate that through engineering of defect chemistry, the basic mechanism can be modified from one-dimensional to three-dimensional conduction, thereby improving kinetics. Combined with the inherent stability of the borate group, the enhanced electrochemical properties should reinvigorate search in borate chemistry for new safe and high-energy cathode materials. -
dc.identifier.bibliographicCitation ENERGY & ENVIRONMENTAL SCIENCE, v.8, no.6, pp.1790 - 1798 -
dc.identifier.doi 10.1039/c5ee00930h -
dc.identifier.issn 1754-5692 -
dc.identifier.scopusid 2-s2.0-84930718354 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/30529 -
dc.identifier.url https://pubs.rsc.org/en/content/articlelanding/2015/EE/C5EE00930H#!divAbstract -
dc.identifier.wosid 000355985700017 -
dc.language 영어 -
dc.publisher ROYAL SOC CHEMISTRY -
dc.title Theoretical capacity achieved in a LiMn0.5Fe0.4Mg0.1BO3 cathode by using topological disorder -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus LI-ION BATTERIES -
dc.subject.keywordPlus RECHARGEABLE LITHIUM BATTERIES -
dc.subject.keywordPlus ELECTROCHEMICAL PROPERTIES -
dc.subject.keywordPlus HOLLOW MICROSPHERES -
dc.subject.keywordPlus CRYSTAL-STRUCTURE -
dc.subject.keywordPlus MONOCLINIC LIMNBO3 -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus INTERCALATION -
dc.subject.keywordPlus PERSPECTIVE -
dc.subject.keywordPlus CHALLENGES -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.