File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

정성균

Jung, Sung-Kyun
Energy Materials Research Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 545 -
dc.citation.number 2 -
dc.citation.startPage 540 -
dc.citation.title ENERGY & ENVIRONMENTAL SCIENCE -
dc.citation.volume 8 -
dc.contributor.author Kim, Jongsoon -
dc.contributor.author Seo, Dong-Hwa -
dc.contributor.author Kim, Hyungsub -
dc.contributor.author Park, Inchul -
dc.contributor.author Yoo, Jung-Keun -
dc.contributor.author Jung, Sung-Kyun -
dc.contributor.author Park, Young-Uk -
dc.contributor.author Goddard, William A., III -
dc.contributor.author Kang, Kisuk -
dc.date.accessioned 2023-12-22T00:16:08Z -
dc.date.available 2023-12-22T00:16:08Z -
dc.date.created 2019-12-03 -
dc.date.issued 2015-20 -
dc.description.abstract Battery chemistry based on earth-abundant elements has great potential for the development of cost-effective, large-scale energy storage systems. Herein, we report, for the first time, that maricite NaFePO4 can function as an excellent cathode material for Na ion batteries, an unexpected result since it has been regarded as an electrochemically inactive electrode for rechargeable batteries. Our investigation of the Na re-(de)intercalation mechanism reveals that all Na ions can be deintercalated from the nano-sized maricite NaFePO4 with simultaneous transformation into amorphous FePO4. Our quantum mechanics calculations show that the underlying reason for the remarkable electrochemical activity of NaFePO4 is the significantly enhanced Na mobility in the transformed phase, which is similar to one fourth of the hopping activation barrier. Maricite NaFePO4, fully sodiated amorphous FePO4, delivered a capacity of 142 mA h g(-1) (92% of the theoretical value) at the first cycle, and showed outstanding cyclability with a negligible capacity fade after 200 cycles (95% retention of the initial cycle). -
dc.identifier.bibliographicCitation ENERGY & ENVIRONMENTAL SCIENCE, v.8, no.2, pp.540 - 545 -
dc.identifier.doi 10.1039/c4ee03215b -
dc.identifier.issn 1754-5692 -
dc.identifier.scopusid 2-s2.0-84926480782 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/30525 -
dc.identifier.url https://pubs.rsc.org/en/content/articlelanding/2015/EE/C4EE03215B#!divAbstract -
dc.identifier.wosid 000349616900011 -
dc.language 영어 -
dc.publisher ROYAL SOC CHEMISTRY -
dc.title Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode for Na-ion batteries -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Energy & Fuels; Engineering, Chemical; Environmental Sciences -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Engineering; Environmental Sciences & Ecology -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus RECHARGEABLE LITHIUM BATTERIES -
dc.subject.keywordPlus SODIUM-ION -
dc.subject.keywordPlus CRYSTAL-STRUCTURE -
dc.subject.keywordPlus CATHODE MATERIAL -
dc.subject.keywordPlus SECONDARY BATTERIES -
dc.subject.keywordPlus HOLLOW MICROSPHERES -
dc.subject.keywordPlus AMORPHOUS FEPO4 -
dc.subject.keywordPlus ANODE MATERIAL -
dc.subject.keywordPlus HIGH-CAPACITY -
dc.subject.keywordPlus HIGH-POWER -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.