File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 697 -
dc.citation.number 7 -
dc.citation.startPage 692 -
dc.citation.title NATURE CHEMISTRY -
dc.citation.volume 8 -
dc.contributor.author Seo, Dong-Hwa -
dc.contributor.author Lee, Jinhyuk -
dc.contributor.author Urban, Alexander -
dc.contributor.author Malik, Rahul -
dc.contributor.author Kang, ShinYoung -
dc.contributor.author Ceder, Gerbrand -
dc.date.accessioned 2023-12-21T23:36:47Z -
dc.date.available 2023-12-21T23:36:47Z -
dc.date.created 2019-12-03 -
dc.date.issued 2016-07 -
dc.description.abstract Lithium-ion batteries are now reaching the energy density limits set by their electrode materials, requiring new paradigms for Li+ and electron hosting in solid-state electrodes. Reversible oxygen redox in the solid state in particular has the potential to enable high energy density as it can deliver excess capacity beyond the theoretical transition-metal redox-capacity at a high voltage. Nevertheless, the structural and chemical origin of the process is not understood, preventing the rational design of better cathode materials. Here, we demonstrate how very specific local Li-excess environments around oxygen atoms necessarily lead to labile oxygen electrons that can be more easily extracted and participate in the practical capacity of cathodes. The identification of the local structural components that create oxygen redox sets a new direction for the design of high-energy-density cathode materials. -
dc.identifier.bibliographicCitation NATURE CHEMISTRY, v.8, no.7, pp.692 - 697 -
dc.identifier.doi 10.1038/NCHEM.2524 -
dc.identifier.issn 1755-4330 -
dc.identifier.scopusid 2-s2.0-84975893295 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/30524 -
dc.identifier.url https://www.nature.com/articles/nchem.2524 -
dc.identifier.wosid 000378280400013 -
dc.language 영어 -
dc.publisher NATURE PUBLISHING GROUP -
dc.title The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary -
dc.relation.journalResearchArea Chemistry -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus CHARGE COMPENSATION MECHANISM -
dc.subject.keywordPlus HIGH-CAPACITY -
dc.subject.keywordPlus ION BATTERIES -
dc.subject.keywordPlus ANIONIC REDOX -
dc.subject.keywordPlus ELECTRODE MATERIALS -
dc.subject.keywordPlus AB-INITIO -
dc.subject.keywordPlus LITHIUM -
dc.subject.keywordPlus LICOO2 -
dc.subject.keywordPlus INTERCALATION -
dc.subject.keywordPlus COMBINATION -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.