File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 4606 -
dc.citation.number 9 -
dc.citation.startPage 4596 -
dc.citation.title JOURNAL OF MATERIALS CHEMISTRY A -
dc.citation.volume 5 -
dc.contributor.author Vassilaras, Plousia -
dc.contributor.author Kwon, Deok-Hwang -
dc.contributor.author Dacek, Stephen T. -
dc.contributor.author Shi, Tan -
dc.contributor.author Seo, Dong-Hwa -
dc.contributor.author Ceder, Gerbrand -
dc.contributor.author Kim, Jae Chul -
dc.date.accessioned 2023-12-21T22:37:08Z -
dc.date.available 2023-12-21T22:37:08Z -
dc.date.created 2019-12-03 -
dc.date.issued 2017-03 -
dc.description.abstract The electrochemical properties of NaNi0.5Co0.5O2 and NaNi0.5Fe0.5O2 and their structural transitions as a function of Na extraction associated with redox reactions are investigated in this work. Synthesized in the O3-type layered structure, both materials show reasonable electrochemical activities at room temperature, delivering approximately 0.5 Na per formula unit at C/10 discharge. More Na can be reversibly cycled in NaNi0.5Co0.5O2 at elevated temperature and/or in an extended voltage window, while NaNi0.5Fe0.5O2 shows significant capacity fading at a high voltage cutoff which is likely due to Fe4+ migration. In situ X-ray diffraction shows that the structural changes in the two materials upon desodiation are very different. NaNi0.5Co0.5O2 goes through many different two-phase reactions including three different O3-type and three different P3-type structures during cycling, producing a voltage profile with multiple plateau-like features. In contrast, NaNi0.5Fe0.5O2 has a smooth voltage profile and shows the typical O3-P3 phase transition without lattice distortion seen in other materials. This different structural evolution upon desodiation and re-sodiation can be explained by the electronic structure of the mixed transition metals and how it perturbs the ordering between Na ions differently. -
dc.identifier.bibliographicCitation JOURNAL OF MATERIALS CHEMISTRY A, v.5, no.9, pp.4596 - 4606 -
dc.identifier.doi 10.1039/c6ta09220a -
dc.identifier.issn 2050-7488 -
dc.identifier.scopusid 2-s2.0-85014207322 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/30522 -
dc.identifier.url https://pubs.rsc.org/en/content/articlelanding/2017/TA/C6TA09220A#!divAbstract -
dc.identifier.wosid 000395926100038 -
dc.language 영어 -
dc.publisher ROYAL SOC CHEMISTRY -
dc.title Electrochemical properties and structural evolution of O3-type layered sodium mixed transition metal oxides with trivalent nickel -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Materials Science -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus CATHODE MATERIAL -
dc.subject.keywordPlus HIGH-POWER -
dc.subject.keywordPlus POSITIVE ELECTRODE -
dc.subject.keywordPlus LITHIUM BATTERIES -
dc.subject.keywordPlus ION BATTERIES -
dc.subject.keywordPlus HIGH-ENERGY -
dc.subject.keywordPlus INTERCALATION -
dc.subject.keywordPlus DIFFUSION -
dc.subject.keywordPlus DEINTERCALATION -
dc.subject.keywordPlus STABILITY -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.