File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 6539 -
dc.citation.number 18 -
dc.citation.startPage 6532 -
dc.citation.title CHEMISTRY OF MATERIALS -
dc.citation.volume 30 -
dc.contributor.author Kim, Haegyeom -
dc.contributor.author Seo, Dong-Hwa -
dc.contributor.author Urban, Alexander -
dc.contributor.author Lee, Jinhyuk -
dc.contributor.author Kwon, Deok-Hwang -
dc.contributor.author Bo, Shou-Hang -
dc.contributor.author Shi, Tan -
dc.contributor.author Papp, Joseph K. -
dc.contributor.author McCloskey, Bryan D. -
dc.contributor.author Ceder, Gerbrand -
dc.date.accessioned 2023-12-21T20:11:48Z -
dc.date.available 2023-12-21T20:11:48Z -
dc.date.created 2019-12-03 -
dc.date.issued 2018-09 -
dc.description.abstract K-ion batteries are promising alternative energy storage systems for large- scale applications because of the globally abundant K reserves. K-ion batteries benefit from the lower standard redox potential of K/K+ than that of Na/Na+ and even Li/Li+, which can translate into a higher working voltage. Stable KC8 can also be formed via K intercalation into a graphite anode, which contrasts with the thermodynamically unfavorable Na intercalation into graphite, making graphite a readily available anode for K-ion battery technology. However, to construct practical rocking-chair K-ion batteries, an appropriate cathode material that can accommodate reversible K release and storage is still needed. We show that stoichiometric KCrO2 with a layered O3-type structure can function as a cathode for K-ion batteries and demonstrate a practical rocking-chair K-ion battery. In situ X-ray diffraction and electrochemical titration demonstrate that KxCrO2 is stable for a wide K content, allowing for topotactic K extraction and reinsertion. We further explain why stoichiometric KCrO2 is unique in forming the layered structure unlike other stoichiometric K-transition metal oxide compounds, which form nonlayered structures; this fundamental understanding provides insight for the future design of other layered cathodes for K-ion batteries. -
dc.identifier.bibliographicCitation CHEMISTRY OF MATERIALS, v.30, no.18, pp.6532 - 6539 -
dc.identifier.doi 10.1021/acs.chemmater.8b03228 -
dc.identifier.issn 0897-4756 -
dc.identifier.scopusid 2-s2.0-85053625441 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/30517 -
dc.identifier.url https://pubs.acs.org/doi/10.1021/acs.chemmater.8b03228 -
dc.identifier.wosid 000445972100037 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Stoichiometric Layered Potassium Transition Metal Oxide for Rechargeable Potassium Batteries -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Materials Science -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus NONAQUEOUS LI-O-2 BATTERIES -
dc.subject.keywordPlus LITHIUM-ION BATTERIES -
dc.subject.keywordPlus TRANSFORMATION -
dc.subject.keywordPlus INTERCALATION -
dc.subject.keywordPlus CATHODE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.