File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

이상영

Lee, Sang-Young
Energy Soft-Materials Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 375 -
dc.citation.startPage 346 -
dc.citation.title ENERGY STORAGE MATERIALS -
dc.citation.volume 22 -
dc.contributor.author Costa, Carlos M. -
dc.contributor.author Lee, Yong-Hyeok -
dc.contributor.author Kim, Jung-Hwan -
dc.contributor.author Lee, Sang-Young -
dc.contributor.author Lanceros-Méndez, Senentxu -
dc.date.accessioned 2023-12-21T18:23:37Z -
dc.date.available 2023-12-21T18:23:37Z -
dc.date.created 2019-09-16 -
dc.date.issued 2019-11 -
dc.description.abstract The battery separator is an essential component of batteries that strongly affects their performance. The control of their properties being particularly important for obtaining lithium-ion batteries with high cycling performance. Separators are placed between both electrodes, should show high ionic conductivity, excellent mechanical and thermal stability and can be divided into six main types: microporous membranes, nonwoven membranes, electrospun membranes, membranes with external surface modification, composite membranes and polymer blends. Considering the relevance of battery separators in the performance of lithium-ion batteries, this work provides the recent advances and an analysis of the main properties of the different types of separators. Despite the large efforts on this area, it is still necessary to improve their characteristics based on new materials developments for this battery component. This paper also summarizes the recent advances in different solid electrolytes based on polymer and ceramic materials for a transition from conventional batteries to solid state batteries, that will allow the next generation of high-performance, safer and sustainable batteries. Finally, the main research and development directions and future trends in the area of separator membranes for lithium-ion batteries are presented. -
dc.identifier.bibliographicCitation ENERGY STORAGE MATERIALS, v.22, pp.346 - 375 -
dc.identifier.doi 10.1016/j.ensm.2019.07.024 -
dc.identifier.issn 2405-8297 -
dc.identifier.scopusid 2-s2.0-85071361476 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/30337 -
dc.identifier.url https://www.sciencedirect.com/science/article/pii/S2405829719308840?via%3Dihub -
dc.identifier.wosid 000488256300035 -
dc.language 영어 -
dc.publisher Elsevier BV -
dc.title Recent advances on separator membranes for lithium-ion battery applications: From porous membranes to solid electrolytes -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Lithium-ion battery applications -
dc.subject.keywordAuthor Separator membranes -
dc.subject.keywordAuthor Solid electrolytes -
dc.subject.keywordPlus GEL POLYMER ELECTROLYTE -
dc.subject.keywordPlus INDUCED PHASE-SEPARATION -
dc.subject.keywordPlus N-METHYLPYRROLIDINIUM BIS(TRIFLUOROMETHANESULFONYL)-IMIDE -
dc.subject.keywordPlus POLY(VINYLIDENE FLUORIDE) SEPARATORS -
dc.subject.keywordPlus MICROPOROUS POLYETHYLENE SEPARATOR -
dc.subject.keywordPlus COATED POLYPROPYLENE SEPARATORS -
dc.subject.keywordPlus INORGANIC COMPOSITE SEPARATOR -
dc.subject.keywordPlus ENHANCED THERMAL-STABILITY -
dc.subject.keywordPlus HIGH-PERFORMANCE SEPARATOR -
dc.subject.keywordPlus ELECTROCHEMICAL PERFORMANCE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.