A Nonsupervised Learning Framework of Human Behavior Patterns Based on Sequential Actions
Cited 7 times in
Cited 7 times in
- Title
- A Nonsupervised Learning Framework of Human Behavior Patterns Based on Sequential Actions
- Author
- Lee, Sang Wan; Kim, Yong Soo; Bien, Zeungnam
- Keywords
- Assistive; Bayesian; Behavioral characteristics; Benchmark data; Cluster validity indices; Emotional factors; Human actions; Human behavior; Human behaviors; Learning frameworks; Learning methods; Q-learning; Real-world database; Sequence of actions; Service systems
- Issue Date
- 2010-04
- Publisher
- IEEE COMPUTER SOC
- Citation
- IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, v.22, no.4, pp.479 - 492
- Abstract
- In designing autonomous service systems such as assistive robots for the aged and the disabled, discovery and prediction of human actions are important and often crucial. Patterns of human behavior, however, involve ambiguity, uncertainty, complexity, and inconsistency caused by physical, logical, and emotional factors, and thus their modeling and recognition are known to be difficult. In this paper, a nonsupervised learning framework of human behavior patterns is suggested in consideration of human behavioral characteristics. Our approach consists of two steps. In the first step, a meaningful structure of data is discovered by using Agglomerative Iterative Bayesian Fuzzy Clustering (AIBFC) with a newly proposed cluster validity index. In the second step, the sequence of actions is learned on the basis of the structure discovered in the first step and by utilizing the proposed Fuzzy-state Q-learning (FSQL) process. These two learning steps are incorporated in an amalgamated framework, AIBFC-FSQL, which is capable of learning human behavior patterns in a nonsupervised manner and predicting subsequent human actions. Through a number of simulations with typical benchmark data sets, we show that the proposed learning method outperforms several well-known methods. We further conduct experiments with two challenging real-world databases to demonstrate its usefulness from a practical perspective.
- URI
- https://scholarworks.unist.ac.kr/handle/201301/2947
- DOI
- 10.1109/TKDE.2009.123
- ISSN
- 1041-4347
- Appears in Collections:
- EE_Journal Papers
- Files in This Item:
- There are no files associated with this item.
can give you direct access to the published full text of this article. (UNISTARs only)
Show full item record
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.