File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

이성국

Lee, Sung Kuk
Synthetic Biology & Metabolic Engineering Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 70 -
dc.citation.number 2 -
dc.citation.startPage 59 -
dc.citation.title BMB REPORTS -
dc.citation.volume 45 -
dc.contributor.author Vinuselvi, Parisutham -
dc.contributor.author Kim, Min Kyung -
dc.contributor.author Lee, Sung Kuk -
dc.contributor.author Ghim, Cheol-Min -
dc.date.accessioned 2023-12-22T05:36:20Z -
dc.date.available 2023-12-22T05:36:20Z -
dc.date.created 2013-06-10 -
dc.date.issued 2012-02 -
dc.description.abstract Carbon catabolite repression (CCR) is a key regulatory system found in most microorganisms that ensures preferential utilization of energy-efficient carbon sources. CCR helps microorganisms obtain a proper balance between their metabolic capacity and the maximum sugar uptake capability. It also constrains the deregulated utilization of a preferred cognate substrate, enabling microorganisms to survive and dominate in natural environments. On the other side of the same coin lies the tenacious bottleneck in microbial production of bioproducts that employs a combination of carbon sources in varied proportion, such as lignocellulose-derived sugar mixtures. Preferential sugar uptake combined with the transcriptional and/or enzymatic exclusion of less preferred sugars turns out one of the major barriers in increasing the yield and productivity of fermentation process. Accumulation of the unused substrate also complicates the downstream processes used to extract the desired product. To overcome this difficulty and to develop tailor-made strains for specific metabolic engineering goals, quantitative and systemic understanding of the molecular interaction map behind CCR is a prerequisite. Here we comparatively review the universal and strain-specific features of CCR circuitry and discuss the recent efforts in developing synthetic cell factories devoid of CCR particularly for lignocellulose-based biorefinery. -
dc.identifier.bibliographicCitation BMB REPORTS, v.45, no.2, pp.59 - 70 -
dc.identifier.doi 10.5483/BMBRep.2012.45.2.59 -
dc.identifier.issn 1976-6696 -
dc.identifier.scopusid 2-s2.0-84863246260 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/2898 -
dc.identifier.url http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84863246260 -
dc.identifier.wosid 000301080800001 -
dc.language 영어 -
dc.publisher KOREAN SOCIETY BIOCHEMISTRY & MOLECULAR BIOLOGY -
dc.title Rewiring carbon catabolite repression for microbial cell factory -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Biochemistry & Molecular Biology -
dc.relation.journalResearchArea Biochemistry & Molecular Biology -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Carbon catabolite repression (CCR) -
dc.subject.keywordAuthor Lignocellulosic biomass -
dc.subject.keywordAuthor Metabolic engineering -
dc.subject.keywordAuthor Phosphotransferase system (PTS) -
dc.subject.keywordAuthor Synthetic biology -
dc.subject.keywordPlus SACCHAROMYCES-CEREVISIAE STRAINS -
dc.subject.keywordPlus ENGINEERED ESCHERICHIA-COLI -
dc.subject.keywordPlus FUNGUS TRICHODERMA-REESEI -
dc.subject.keywordPlus GLUCOSE-LACTOSE DIAUXIE -
dc.subject.keywordPlus ZYMOMONAS-MOBILIS -
dc.subject.keywordPlus BACILLUS-SUBTILIS -
dc.subject.keywordPlus ETHANOL-PRODUCTION -
dc.subject.keywordPlus PHOSPHOTRANSFERASE SYSTEM -
dc.subject.keywordPlus LISTERIA-MONOCYTOGENES -
dc.subject.keywordPlus TRANSCRIPTIONAL REGULATION -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.