An Effective Disturbance-Observer-Based Nonlinear Controller for a Pump-Controlled Hydraulic System

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
An Effective Disturbance-Observer-Based Nonlinear Controller for a Pump-Controlled Hydraulic System
Author
Ba, Dang XuanDinh, Truong QuangBae, JoonbumAhn, Kyoung Kwan
Issue Date
2020-02
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Citation
IEEE-ASME TRANSACTIONS ON MECHATRONICS, v.25, no.1, pp.32 - 43
Abstract
Researches for improving the control performance of hydraulic systems in both control accuracy and energy efficiency have never stopped in aerospace and industrial applications. The existence of nonlinearities, uncertainties, and unknown terms in the system dynamics, however, significantly limits the desired performance. To realize improvements by dealing with these problems, an advanced position controller incorporated with effective disturbance observers (DOs) applied for a pump-controlled hydraulic system is proposed in this article. Here, uncertainties are considered as certainties (nominal terms) and their deviations. To eliminate certain nonlinearities in the system dynamics, the proposed controller is designed based on a simplified robust sliding-mode-backstepping scheme. The lumped unknown terms, which mainly degrade the performance of the controller, in pressure dynamics and force dynamics are expanded by using equivalent nonautonomous models. To effectively approximate the terms and to ensure usability of the estimated results inside the control framework, two different high-order DOs are developed. Asymptotic convergences of these observers are achieved by adopting nonlinear combinations of the estimation errors. Effectiveness and feasibility of the designed observers and the closed-loop system for an asymptotically tracking performance in the presence of bounded time-varying disturbances are then confirmed by Lyapunov-based proofs and extensive experiments.
URI
https://scholarworks.unist.ac.kr/handle/201301/27813
URL
https://ieeexplore.ieee.org/document/8865634
DOI
10.1109/TMECH.2019.2946871
ISSN
1083-4435
Appears in Collections:
MNE_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU