File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

민두영

Min, Duyoung
Single-molecule Biophysics and Biochemistry Lab
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 1046 -
dc.citation.number 6379 -
dc.citation.startPage 1042 -
dc.citation.title SCIENCE -
dc.citation.volume 359 -
dc.contributor.author Lu, Peilong -
dc.contributor.author Min, Duyoung -
dc.contributor.author DiMaio, Frank -
dc.contributor.author Wei, Kathy Y. -
dc.contributor.author Vahey, Michael D. -
dc.contributor.author Boyken, Scott E. -
dc.contributor.author Chen, Zibo -
dc.contributor.author Fallas, Jorge A. -
dc.contributor.author Ueda, George -
dc.contributor.author Sheffler, William -
dc.contributor.author Mulligan, Vikram Khipple -
dc.contributor.author Xu, Wenqing -
dc.contributor.author Bowie, James U. -
dc.contributor.author Baker, David -
dc.date.accessioned 2023-12-21T21:06:49Z -
dc.date.available 2023-12-21T21:06:49Z -
dc.date.created 2019-10-04 -
dc.date.issued 2018-03 -
dc.description.abstract The computational design of transmembrane proteins with more than one membrane-spanning region remains a major challenge. We report the design of transmembrane monomers, homodimers, trimers, and tetramers with 76 to 215 residue subunits containing two to four membrane-spanning regions and up to 860 total residues that adopt the target oligomerization state in detergent solution. The designed proteins localize to the plasma membrane in bacteria and in mammalian cells, and magnetic tweezer unfolding experiments in the membrane indicate that they are very stable. Crystal structures of the designed dimer and tetramer-a rocket-shaped structure with a wide cytoplasmic base that funnels into eight transmembrane helices-are very close to the design models. Our results pave the way for the design of multispan membrane proteins with new functions. -
dc.identifier.bibliographicCitation SCIENCE, v.359, no.6379, pp.1042 - 1046 -
dc.identifier.doi 10.1126/science.aaq1739 -
dc.identifier.issn 0036-8075 -
dc.identifier.scopusid 2-s2.0-85042856204 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/27803 -
dc.identifier.url https://science.sciencemag.org/content/359/6379/1042 -
dc.identifier.wosid 000426366200044 -
dc.language 영어 -
dc.publisher AMER ASSOC ADVANCEMENT SCIENCE -
dc.title Accurate computational design of multipass transmembrane proteins -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Multidisciplinary Sciences -
dc.relation.journalResearchArea Science & Technology - Other Topics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus DE-NOVO DESIGN -
dc.subject.keywordPlus MEMBRANE-PROTEINS -
dc.subject.keywordPlus HOMO-OLIGOMERS -
dc.subject.keywordPlus STABILITY -
dc.subject.keywordPlus HELIX -
dc.subject.keywordPlus NETWORK -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.