File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

곽상규

Kwak, Sang Kyu
Kyu’s MolSim Lab @ UNIST
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 134 -
dc.citation.number 25 -
dc.citation.startPage 128 -
dc.citation.title JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY -
dc.citation.volume 77 -
dc.contributor.author Go, Eun Min -
dc.contributor.author Shin, Eunhye -
dc.contributor.author Cha, JinHyeok -
dc.contributor.author Kwak, Sang Kyu -
dc.date.accessioned 2023-12-21T18:46:39Z -
dc.date.available 2023-12-21T18:46:39Z -
dc.date.created 2019-05-23 -
dc.date.issued 2019-09 -
dc.description.abstract Using coarse-grained molecular dynamics, we estimated the heat transfer coefficient (HTC) of coolant, a mixture (50:50 wt%) of water and ethylene glycol (EG), in a Fe nanopipe. In the Newtonian flow regime, the pipe was heated at 325 K. The HTC increased rapidly along the nanopipe at the thermal boundary layer (TBL). The HTC was estimated to be 3.08 × 10 8 W/m 2 K, and those of water and EG were 1.24 × 10 8 and 1.87 × 10 8 W/m 2 K, respectively. A relationship between the TBL and the HTC existed along the pipe and that the heat transfer mainly occurred in the TBL. -
dc.identifier.bibliographicCitation JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, v.77, no.25, pp.128 - 134 -
dc.identifier.doi 10.1016/j.jiec.2019.04.027 -
dc.identifier.issn 1226-086X -
dc.identifier.scopusid 2-s2.0-85065024067 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/27455 -
dc.identifier.url https://www.sciencedirect.com/science/article/pii/S1226086X1930190X?via%3Dihub -
dc.identifier.wosid 000473376600012 -
dc.language 영어 -
dc.publisher Korean Society of Industrial Engineering Chemistry -
dc.title Estimation of heat transfer coefficient of water and ethylene glycol mixture in nanopipe via non-equilibrium coarse-grained molecular dynamics -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Engineering, Chemical -
dc.identifier.kciid ART002510060 -
dc.relation.journalResearchArea Chemistry; Engineering -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.description.journalRegisteredClass kci -
dc.subject.keywordAuthor CGMD simulation -
dc.subject.keywordAuthor Heat transfer coefficient -
dc.subject.keywordAuthor Nanopipe flow -
dc.subject.keywordAuthor Thermal conductivity -
dc.subject.keywordPlus Heat transfer coefficients -
dc.subject.keywordPlus Mixtures -
dc.subject.keywordPlus Polyols -
dc.subject.keywordPlus Thermal conductivity -
dc.subject.keywordPlus CGMD simulation -
dc.subject.keywordPlus Coarse-grained molecular dynamics -
dc.subject.keywordPlus Heat transfer coefficient (HTC) -
dc.subject.keywordPlus Nanopipe flow -
dc.subject.keywordPlus Non equilibrium -
dc.subject.keywordPlus Thermal boundary layer -
dc.subject.keywordPlus Molecular dynamics -
dc.subject.keywordPlus Boundary layers -
dc.subject.keywordPlus Ethylene -
dc.subject.keywordPlus Ethylene glycol -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.