File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

장성연

Jang, Sung-Yeon
Renewable Energy and Nanoelectronics Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 633 -
dc.citation.number 7771 -
dc.citation.startPage 628 -
dc.citation.title NATURE -
dc.citation.volume 572 -
dc.contributor.author Cui, Longji -
dc.contributor.author Hur, Sunghoon -
dc.contributor.author Akbar, Zico Alaia -
dc.contributor.author Klöckner, Jan C. -
dc.contributor.author Jeong, Wonho -
dc.contributor.author Pauly, Fabian -
dc.contributor.author Jang, Sung-Yeon -
dc.contributor.author Reddy, Pramod -
dc.contributor.author Meyhofer, Edgar -
dc.date.accessioned 2023-12-21T18:49:48Z -
dc.date.available 2023-12-21T18:49:48Z -
dc.date.created 2019-09-02 -
dc.date.issued 2019-08 -
dc.description.abstract Single-molecule junctions have been extensively used to probe properties as diverse as electrical conduction, light emission, thermoelectric energy conversion, quantum interference, heat dissipation and electronic noise at atomic and molecular scales. However, a key quantity of current interest—the thermal conductance of single-molecule junctions—has not yet been directly experimentally determined, owing to the challenge of detecting minute heat currents at the picowatt level. Here we show that picowatt-resolution scanning probes previously developed to study the thermal conductance of single-metal-atom junctions, when used in conjunction with a time-averaging measurement scheme to increase the signal-to-noise ratio, also allow quantification of the much lower thermal conductance of single-molecule junctions. Our experiments on prototypical Au–alkanedithiol–Au junctions containing two to ten carbon atoms confirm that thermal conductance is to a first approximation independent of molecular length, consistent with detailed ab initio simulations. We anticipate that our approach will enable systematic exploration of thermal transport in many other one-dimensional systems, such as short molecules and polymer chains, for which computational predictions of thermal conductance have remained experimentally inaccessible. -
dc.identifier.bibliographicCitation NATURE, v.572, no.7771, pp.628 - 633 -
dc.identifier.doi 10.1038/s41586-019-1420-z -
dc.identifier.issn 0028-0836 -
dc.identifier.scopusid 2-s2.0-85070437605 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/27390 -
dc.identifier.url https://www.nature.com/articles/s41586-019-1420-z -
dc.identifier.wosid 000483405500048 -
dc.language 영어 -
dc.publisher Nature Publishing Group -
dc.title Thermal conductance of single-molecule junctions -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Multidisciplinary Sciences -
dc.relation.journalResearchArea Science & Technology - Other Topics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus BASIS-SETS -
dc.subject.keywordPlus HEAT-FLOW -
dc.subject.keywordPlus TRANSPORT -
dc.subject.keywordPlus THERMOELECTRICITY -
dc.subject.keywordPlus ACCURATE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.