File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

신태주

Shin, Tae Joo
Synchrotron Radiation Research Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 35 -
dc.citation.startPage 1901343 -
dc.citation.title ADVANCED ENERGY MATERIALS -
dc.citation.volume 9 -
dc.contributor.author Yun, Hyun‐Sung -
dc.contributor.author Park, Byung‐wook -
dc.contributor.author Choi, Yong Chan -
dc.contributor.author Im, Jino -
dc.contributor.author Shin, Tae Joo -
dc.contributor.author Seok, Sang Il -
dc.date.accessioned 2023-12-21T18:45:33Z -
dc.date.available 2023-12-21T18:45:33Z -
dc.date.created 2019-08-27 -
dc.date.issued 2019-09 -
dc.description.abstract Tin sulfide (SnS) is one of the most promising solar cell materials, as it is abundant, environment friendly, available at low cost, and offers long-term stability. However, the highest efficiency of the SnS solar cell reported so far remains at 4.36% even using the expensive atomic layer deposition process. This study reports on the fabrication of SnS solar cells by a solution process that employs rapid thermal treatment for few seconds under Ar gas flow after spin-coating a precursor solution of SnCl2 and thiourea dissolved in dimethylformamide onto a nanostructured thin TiO2 electrode. The best-performing cell exhibits power conversion efficiency (PCE) of 3.8% under 1 sun radiation conditions (AM1.5G). Moreover, secondary treatment using SnCl2 results in a significant improvement of 4.8% in PCE, which is one of the highest efficiencies among SnS-based solar cells, especially with TiO2 electrodes. The thin film properties of SnS after SnCl2 secondary treatment are analyzed using grazing-incidence wide-angle X-ray scattering, and high-resolution transmittance electron microscopy. -
dc.identifier.bibliographicCitation ADVANCED ENERGY MATERIALS, v.9, no.35, pp.1901343 -
dc.identifier.doi 10.1002/aenm.201901343 -
dc.identifier.issn 1614-6832 -
dc.identifier.scopusid 2-s2.0-85070229394 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/27384 -
dc.identifier.url https://onlinelibrary.wiley.com/doi/full/10.1002/aenm.201901343 -
dc.identifier.wosid 000484085100001 -
dc.language 영어 -
dc.publisher Wiley-VCH Verlag -
dc.title Efficient Nanostructured TiO2/SnS Heterojunction Solar Cells -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Energy & Fuels; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.relation.journalResearchArea Chemistry; Energy & Fuels; Materials Science; Physics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor hot carrier Ar gas -
dc.subject.keywordAuthor rapid formation technique -
dc.subject.keywordAuthor SnS -
dc.subject.keywordAuthor solution processing -
dc.subject.keywordAuthor tin chalcogenide -
dc.subject.keywordPlus ATOMIC LAYER DEPOSITION -
dc.subject.keywordPlus SNS -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.