File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

RohdeJan-Uwe

Rohde, Jan-Uwe
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 5258 -
dc.citation.number 5 -
dc.citation.startPage 5251 -
dc.citation.title ACS NANO -
dc.citation.volume 13 -
dc.contributor.author Jiang, Yi -
dc.contributor.author Oh, Inseon -
dc.contributor.author Joo, Se Hun -
dc.contributor.author Buyukcakir, Onur -
dc.contributor.author Chen, Xiong -
dc.contributor.author Lee, Sun Hwa -
dc.contributor.author Huang, Ming -
dc.contributor.author Seong, Won Kyung -
dc.contributor.author Kim, Jin Hoon -
dc.contributor.author Rohde, Jan-Uwe -
dc.contributor.author Kwak, Sang Kyu -
dc.contributor.author Yoo, Jung-Woo -
dc.contributor.author Ruoff, Rodney S. -
dc.date.accessioned 2023-12-21T19:09:30Z -
dc.date.available 2023-12-21T19:09:30Z -
dc.date.created 2019-06-20 -
dc.date.issued 2019-05 -
dc.description.abstract The production of multifunctional pure organic materials that combine different sizes of pores and a large number of electron spins is highly desirable due to their potential applications as polarizers for dynamic nuclear polarization nuclear magnetic resonance and as catalysts and magnetic separation media. Here, we report a polychlorotriphenylmethyl radical-linked covalent triazine framework (PTMR-CTF). Two different sizes of micropores were established by N-2 sorption and the presence of unpaired electrons (carbon radicals) by electron spin resonance and superconducting quantum interference device vibrating sample magnetometer analyses. Magnetization measurements demonstrate that this material exhibits spin-half paramagnetism with a spin concentration of similar to 2.63 X 10(23) spins/mol. We also determined the microscopic origin of the magnetic moments in PTMR-CTF by investigating its spin density and electronic structure using density functional theory calculations. -
dc.identifier.bibliographicCitation ACS NANO, v.13, no.5, pp.5251 - 5258 -
dc.identifier.doi 10.1021/acsnano.8b09634 -
dc.identifier.issn 1936-0851 -
dc.identifier.scopusid 2-s2.0-85065794696 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/27342 -
dc.identifier.url https://pubs.acs.org/doi/10.1021/acsnano.8b09634 -
dc.identifier.wosid 000469886300034 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Organic Radical-Linked Covalent Triazine Framework with Paramagnetic Behavior -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor different pore size -
dc.subject.keywordAuthor polychlorotriphenylmethyl radical -
dc.subject.keywordAuthor electron spins -
dc.subject.keywordAuthor covalent triazine framework -
dc.subject.keywordAuthor spin-half paramagnetism -
dc.subject.keywordAuthor spin concentration -
dc.subject.keywordPlus DIFFERENT KINDS -
dc.subject.keywordPlus CONSTRUCTION -
dc.subject.keywordPlus SEPARATION -
dc.subject.keywordPlus PORES -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.