File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

송창근

Song, Chang-Keun
Air Quality Impact Assessment Research Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

New Era of Air Quality Monitoring from Space: Geostationary Environment Monitoring Spectrometer (GEMS)

Author(s)
Kim, JhoonJeong, UkkyoAhn, Myoung-HwanKim, Jae H.Park, Rokjin J.Lee, HanlimSong, Chul HanChoi, Yong-SangLee, Kwon-HoYoo, Jung-MoonJeong, Myeong-JaePark, Seon KiLee, Kwang-MogSong, Chang-KeunKim, Sang-WooKim, YoungJoonKim, Si-WanKim, MijinGo, SujungLiu, XiongChance, KellyChan Miller, ChristopherAl-Saadi, JayVeihelmann, BenBhartia, Pawan K.Torres, OmarAbad, Gonzalo GonzálezHaffner, David P.Ko, Dai HoLee, Seung HoonWoo, Jung-HunChong, HeesungPark, Sang SeoNicks, DennisChoi, Won JunMoon, Kyung-JungCho, AraYoon, JongminKim, Sang-kyunHong, HyunkeeLee, KyunghwaLee, HanaLee, SeoyoungChoi, MyungjeVeefkind, PepijnLevelt, PieternelEdwards, David P.Kang, MinaEo, MijinBak, JuseonBaek, KanghyunKwon, Hyeong-AhnYang, JiwonPark, JunsungHan, Kyung ManKim, Bo-RamShin, Hee-WooChoi, HaklimLee, EbonyChong, JihyoCha, YesolKoo, Ja-HoIrie, HitoshiHayashida, SachikoKasai, YaskoKanaya, YugoLiu, ChengLin, JintaiCrawford, James H.Carmichael, Gregory R.Newchurch, Michael J.Lefer, Barry L.Herman, Jay R.Swap, Robert J.Lau, Alexis K HKurosu, Thomas P.Jaross, GlenAhlers, BeritDobber, MarcelMcElroy, C.T.Choi, Yunsoo
Issued Date
2020-01
DOI
10.1175/bams-d-18-0013.1
URI
https://scholarworks.unist.ac.kr/handle/201301/27332
Fulltext
https://journals.ametsoc.org/doi/10.1175/BAMS-D-18-0013.1
Citation
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, v.101, no.1, pp.E1 - E22
Abstract
GEMS will monitor air quality over Asia at unprecedented spatial and temporal resolution from GEO for the first time, providing column measurements of aerosol, ozone and their precursors (nitrogen dioxide, sulfur dioxide and formaldehyde).

Geostationary Environment Monitoring Spectrometer (GEMS) is scheduled for launch in late 2019 - early 2020 to monitor Air Quality (AQ) at an unprecedented spatial and temporal resolution from a Geostationary Earth Orbit (GEO) for the first time. With the development of UV-visible spectrometers at sub-nm spectral resolution and sophisticated retrieval algorithms, estimates of the column amounts of atmospheric pollutants (O3, NO2, SO2, HCHO, CHOCHO and aerosols) can be obtained. To date, all the UV-visible satellite missions monitoring air quality have been in Low Earth orbit (LEO), allowing one to two observations per day. With UV-visible instruments on GEO platforms, the diurnal variations of these pollutants can now be determined. Details of the GEMS mission are presented, including instrumentation, scientific algorithms, predicted performance, and applications for air quality forecasts through data assimilation. GEMS will be onboard the GEO-KOMPSAT-2 satellite series, which also hosts the Advanced Meteorological Imager (AMI) and Geostationary Ocean Color Imager (GOCI)-2. These three instruments will provide synergistic science products to better understand air quality, meteorology, the long-range transport of air pollutants, emission source distributions, and chemical processes. Faster sampling rates at higher spatial resolution will increase the probability of finding cloud-free pixels, leading to more observations of aerosols and trace gases than is possible from LEO. GEMS will be joined by NASA's TEMPO and ESA's Sentinel-4 to form a GEO AQ satellite constellation in early 2020s, coordinated by the Committee on Earth Observation Satellites (CEOS).
Publisher
American Meteorological Society
ISSN
0003-0007
Keyword
AEROSOL OPTICAL DEPTHABSORPTION CROSS-SECTIONSOZONE PROFILE RETRIEVALSSATELLITE-OBSERVATIONSEMISSION INVENTORYEAST-ASIATROPOSPHERIC POLLUTIONNITROGEN-DIOXIDEUV SPECTROSCOPYGLOBAL BURDEN

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.