File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 16423 -
dc.citation.number 31 -
dc.citation.startPage 16411 -
dc.citation.title INTERNATIONAL JOURNAL OF HYDROGEN ENERGY -
dc.citation.volume 44 -
dc.contributor.author Wang, Jiangli -
dc.contributor.author Cao, Xinrui -
dc.contributor.author Fang, Lei -
dc.contributor.author You, Xueqiu -
dc.contributor.author Wong, Kester -
dc.contributor.author Cao, Shuohui -
dc.contributor.author Xiao, Chi -
dc.contributor.author Cai, Shuhui -
dc.contributor.author Huang, Yuqing -
dc.contributor.author Zhang, Xiaoping -
dc.contributor.author Chen, Zhong -
dc.date.accessioned 2023-12-21T19:07:09Z -
dc.date.available 2023-12-21T19:07:09Z -
dc.date.created 2019-07-18 -
dc.date.issued 2019-06 -
dc.description.abstract Developing highly active and stable ethanol oxidation electrocatalysts is crucial for direct ethanol fuel cells. Herein, platinum/molybdenum disulfide nanoflower (Pt/MoS2) nano-composite is synthesized through a facile method and is first applied as catalyst for ethanol oxidation reaction. In situ electrochemical nuclear magnetic resonance is carried out to investigate the electrocatalytic activity of Pt/MoS2 and the detailed mechanism of ethanol oxidation reaction. Experimental results indicate that in situ electrochemical nuclear magnetic resonance possesses great advantages for real-time investigation of ethanol oxidation reaction, and Pt/MoS2 is found to exhibit better electrocatalytic performances in terms of higher current density, better stability, and stronger anti-poisoning activity compared to commercial Pt/C and pure Pt catalysts in acid electrolyte, suggesting its potential for application in direct ethanol fuel cells. Density functional theory calculations indicate that MoS2-supported Pt atom has a smaller energy barrier for the dissociation of ethanol compared to those of Pt and C-supported Pt atom, leading to the enhancement of catalytic activity. This work reveals the importance of the supporting materials for high performance direct ethanol fuel cells catalysts. -
dc.identifier.bibliographicCitation INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, v.44, no.31, pp.16411 - 16423 -
dc.identifier.doi 10.1016/j.ijhydene.2019.04.251 -
dc.identifier.issn 0360-3199 -
dc.identifier.scopusid 2-s2.0-85065830533 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/27247 -
dc.identifier.url https://www.sciencedirect.com/science/article/pii/S0360319919317367?via%3Dihub -
dc.identifier.wosid 000472991100035 -
dc.language 영어 -
dc.publisher PERGAMON-ELSEVIER SCIENCE LTD -
dc.title MoS2 nanoflower supported Pt nanoparticle as an efficient electrocatalyst for ethanol oxidation reaction -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Electrochemistry; Energy & Fuels -
dc.relation.journalResearchArea Chemistry; Electrochemistry; Energy & Fuels -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Pt/MoS2 -
dc.subject.keywordAuthor Ethanol oxidation reaction -
dc.subject.keywordAuthor Density functional theory calculations -
dc.subject.keywordAuthor In situ electrochemical NMR -
dc.subject.keywordPlus HYDROGEN EVOLUTION REACTION -
dc.subject.keywordPlus CATALYTIC-ACTIVITY -
dc.subject.keywordPlus CARBON-MONOXIDE -
dc.subject.keywordPlus IN-SITU -
dc.subject.keywordPlus ELECTROOXIDATION -
dc.subject.keywordPlus CO -
dc.subject.keywordPlus NANOSHEETS -
dc.subject.keywordPlus GRAPHENE -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus ACID -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.