File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

유자형

Ryu, Ja-Hyoung
Supramolecular Nanomaterials Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 19742 -
dc.citation.number 22 -
dc.citation.startPage 19734 -
dc.citation.title ACS APPLIED MATERIALS & INTERFACES -
dc.citation.volume 11 -
dc.contributor.author Lu, Yao -
dc.contributor.author Palanikumar, Loganathan -
dc.contributor.author Choi, Eun Seong -
dc.contributor.author Huskens, Jurriaan -
dc.contributor.author Ryu, Ja-Hyoung -
dc.contributor.author Wang, Yanyan -
dc.contributor.author Pang, Wei -
dc.contributor.author Duan, Xuexin -
dc.date.accessioned 2023-12-21T19:07:31Z -
dc.date.available 2023-12-21T19:07:31Z -
dc.date.created 2019-06-28 -
dc.date.issued 2019-06 -
dc.description.abstract The intracellular delivery efficiency of drug-loaded nanocarriers is often limited by biological barriers arising from the plasma membrane and the cell interior. In this work, the entering of doxorubicin (Dox)-loaded mesoporous silica nanoparticles (MSNs) into the cytoplasm was acoustically enhanced through direct penetration with the assistance of hypersound of gigahertz (GHz) frequency. Both fluorescence and cell viability measurements revealed that the therapeutic efficacy of Dox-loaded MSNs was significantly improved by tuning the power and duration of hypersound on demand with a nanoelectromechanical resonator. Mechanism studies with inhibitors illustrated that the membrane defects induced by the hypersound-triggered GHz acoustic streaming facilitated the Dox-loaded MSNs of 100-200 nm to directly penetrate through the cell membrane instead of via the traditional endocytosis, which highly increased the delivery efficiency by avoiding the formation of endosomes. This acoustic method enables the drug carriers to overcome biological barriers of the cell membrane and the endosomes without the limitation of carrier materials, which provides a versatile way of enhanced drug delivery for biomedical applications. -
dc.identifier.bibliographicCitation ACS APPLIED MATERIALS & INTERFACES, v.11, no.22, pp.19734 - 19742 -
dc.identifier.doi 10.1021/acsami.9b02447 -
dc.identifier.issn 1944-8244 -
dc.identifier.scopusid 2-s2.0-85066901356 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/27169 -
dc.identifier.url https://pubs.acs.org/doi/10.1021/acsami.9b02447 -
dc.identifier.wosid 000470938500007 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Hypersound-Enhanced Intracellular Delivery of Drug-Loaded Mesoporous Silica Nanoparticles in a Non-Endosomal Pathway -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Science & Technology - Other Topics; Materials Science -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor gigahertz acoustic streaming -
dc.subject.keywordAuthor NEMS Resonator -
dc.subject.keywordAuthor mesoporous silica nanoparticle -
dc.subject.keywordAuthor penetration -
dc.subject.keywordAuthor drug delivery -
dc.subject.keywordPlus CELL-MEMBRANE -
dc.subject.keywordPlus TRANSFECTION -
dc.subject.keywordPlus RELEASE -
dc.subject.keywordPlus DNA -
dc.subject.keywordPlus NANOCARRIERS -
dc.subject.keywordPlus STRATEGIES -
dc.subject.keywordPlus POLYMERS -
dc.subject.keywordPlus PROGRESS -
dc.subject.keywordPlus DESIGN -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.