BROWSE

Related Researcher

Author's Photo

Ryu, Ja-Hyoung
Supramolecular NanoMaterials Lab (SUN)
Research Interests
  • Supramolecular assembly, synthetic peptide assembly, cancer drug delivery

ITEM VIEW & DOWNLOAD

Hypersound-Enhanced Intracellular Delivery of Drug-Loaded Mesoporous Silica Nanoparticles in a Non-Endosomal Pathway

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Hypersound-Enhanced Intracellular Delivery of Drug-Loaded Mesoporous Silica Nanoparticles in a Non-Endosomal Pathway
Author
Lu, YaoPalanikumar, LoganathanChoi, Eun SeongHuskens, JurriaanRyu, Ja-HyoungWang, YanyanPang, WeiDuan, Xuexin
Issue Date
2019-06
Publisher
AMER CHEMICAL SOC
Citation
ACS APPLIED MATERIALS & INTERFACES, v.11, no.22, pp.19734 - 19742
Abstract
The intracellular delivery efficiency of drug-loaded nanocarriers is often limited by biological barriers arising from the plasma membrane and the cell interior. In this work, the entering of doxorubicin (Dox)-loaded mesoporous silica nanoparticles (MSNs) into the cytoplasm was acoustically enhanced through direct penetration with the assistance of hypersound of gigahertz (GHz) frequency. Both fluorescence and cell viability measurements revealed that the therapeutic efficacy of Dox-loaded MSNs was significantly improved by tuning the power and duration of hypersound on demand with a nanoelectromechanical resonator. Mechanism studies with inhibitors illustrated that the membrane defects induced by the hypersound-triggered GHz acoustic streaming facilitated the Dox-loaded MSNs of 100-200 nm to directly penetrate through the cell membrane instead of via the traditional endocytosis, which highly increased the delivery efficiency by avoiding the formation of endosomes. This acoustic method enables the drug carriers to overcome biological barriers of the cell membrane and the endosomes without the limitation of carrier materials, which provides a versatile way of enhanced drug delivery for biomedical applications.
URI
https://scholarworks.unist.ac.kr/handle/201301/27169
URL
https://pubs.acs.org/doi/10.1021/acsami.9b02447
DOI
10.1021/acsami.9b02447
ISSN
1944-8244
Appears in Collections:
SNS_Journal Papers
Files in This Item:
There are no files associated with this item.

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU