File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

RuoffRodney Scott

Ruoff, Rodney S.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 3 -
dc.citation.startPage 031106 -
dc.citation.title APL MATERIALS -
dc.citation.volume 7 -
dc.contributor.author Park, Sun-Young -
dc.contributor.author Kim, Young-Cheon -
dc.contributor.author Ruoff, Rodney S. -
dc.contributor.author Kim, Ju-Young -
dc.date.accessioned 2023-12-21T19:19:50Z -
dc.date.available 2023-12-21T19:19:50Z -
dc.date.created 2019-04-09 -
dc.date.issued 2019-03 -
dc.description.abstract Cu coated with a graphene layer increases the elastic modulus from 163.4 GPa to 176.7 GPa, as analyzed for the initial elastic loading during nanoindentation by the Hertzian contact theory. This is attributed to stiffening, due to the ultra-high elastic modulus of the graphene layer, and the compressive in-plane residual stresses in the Cu surface volume introduced by the lattice mismatch between graphene and Cu. The graphene layer induces incipient plasticity, manifested by pop-in events during nanoindentation loading, at shallower indentation depths. This could be due to the compressive in-plane residual stress in the Cu surface volume; however, this compressive stress does not significantly change the critical resolved shear stress for the incipient plasticity. Even in the fully plastic contact region, at an indentation depth of 100 nm, the graphene layer affects the stress distribution underneath the indenter, resulting in a lower pile-up height. When considering this reduced pile-up height, the graphene layer is found to enhance elastic modulus by 5%, whereas it has no effect on hardness. -
dc.identifier.bibliographicCitation APL MATERIALS, v.7, no.3, pp.031106 -
dc.identifier.doi 10.1063/1.5086333 -
dc.identifier.issn 2166-532X -
dc.identifier.scopusid 2-s2.0-85062889279 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/27047 -
dc.identifier.url https://aip.scitation.org/doi/10.1063/1.5086333 -
dc.identifier.wosid 000462880800009 -
dc.language 영어 -
dc.publisher American Institute of Physics Inc. -
dc.title Incipient plasticity and fully plastic contact behavior of copper coated with a graphene layer -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied -
dc.relation.journalResearchArea Science & Technology - Other Topics; Materials Science; Physics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus Nanoindentation -
dc.subject.keywordPlus Piles -
dc.subject.keywordPlus Plastic coatings -
dc.subject.keywordPlus Plasticity -
dc.subject.keywordPlus Residual stresses -
dc.subject.keywordPlus Shear stress -
dc.subject.keywordPlus Critical resolved shear stress -
dc.subject.keywordPlus Cu surfaces -
dc.subject.keywordPlus Fully-plastic -
dc.subject.keywordPlus Graphene layers -
dc.subject.keywordPlus Hertzian-contact theory -
dc.subject.keywordPlus In-plane residual stress -
dc.subject.keywordPlus Indentation depth -
dc.subject.keywordPlus Graphene -
dc.subject.keywordPlus Incipient plasticity -
dc.subject.keywordPlus Compressive stress -
dc.subject.keywordPlus Elastic moduli -
dc.subject.keywordPlus Indentation -
dc.subject.keywordPlus Lattice mismatch -
dc.subject.keywordPlus Metal coatings -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.