File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

정후영

Jeong, Hu Young
UCRF Electron Microscopy group
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 1 -
dc.citation.startPage 2623 -
dc.citation.title NATURE COMMUNICATIONS -
dc.citation.volume 10 -
dc.contributor.author Li, Feng -
dc.contributor.author Bu, Yunfei -
dc.contributor.author Han, Gao-Feng -
dc.contributor.author Noh, Hyuk-Jun -
dc.contributor.author Kim, Seok-Jin -
dc.contributor.author Ahmad, Ishfaq -
dc.contributor.author Lu, Yalin -
dc.contributor.author Zhang, Peng -
dc.contributor.author Jeong, Hu Young -
dc.contributor.author Fu, Zhengping -
dc.contributor.author Zhong, Qin -
dc.contributor.author Baek, Jong-Beom -
dc.date.accessioned 2023-12-21T19:07:29Z -
dc.date.available 2023-12-21T19:07:29Z -
dc.date.created 2019-06-28 -
dc.date.issued 2019-06 -
dc.description.abstract Identification of active sites is one of the main obstacles to rational design of catalysts for diverse applications. Fundamental insight into the identification of the structure of active sites and structural contributions for catalytic performance are still lacking. Recently, X-ray absorption spectroscopy (XAS) and density functional theory (DFT) provide important tools to disclose the electronic, geometric and catalytic natures of active sites. Herein, we demonstrate the structural identification of Zn-N-2 active sites with both experimental/theoretical X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra. Further DFT calculations reveal that the oxygen species activation on Zn-N-2 active sites is significantly enhanced, which can accelerate the reduction of oxygen with high selectivity, according well with the experimental results. This work highlights the identification and investigation of Zn-N-2 active sites, providing a regular principle to obtain deep insight into the nature of catalysts for various catalytic applications. -
dc.identifier.bibliographicCitation NATURE COMMUNICATIONS, v.10, no.1, pp.2623 -
dc.identifier.doi 10.1038/s41467-019-10622-1 -
dc.identifier.issn 2041-1723 -
dc.identifier.scopusid 2-s2.0-85067295569 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/27028 -
dc.identifier.url https://www.nature.com/articles/s41467-019-10622-1 -
dc.identifier.wosid 000471228300001 -
dc.language 영어 -
dc.publisher NATURE PUBLISHING GROUP -
dc.title Identifying the structure of Zn-N-2 active sites and structural activation -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Multidisciplinary Sciences -
dc.relation.journalResearchArea Science & Technology - Other Topics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus OXYGEN REDUCTION REACTION -
dc.subject.keywordPlus METAL-ORGANIC FRAMEWORK -
dc.subject.keywordPlus SINGLE-ATOM -
dc.subject.keywordPlus CARBON -
dc.subject.keywordPlus EVOLUTION -
dc.subject.keywordPlus CATALYST -
dc.subject.keywordPlus ELECTROCATALYSTS -
dc.subject.keywordPlus GRAPHENE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.