File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

장성연

Jang, Sung-Yeon
Renewable Energy and Nanoelectronics Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 409 -
dc.citation.startPage 403 -
dc.citation.title NANO ENERGY -
dc.citation.volume 31 -
dc.contributor.author Aqoma, Havid -
dc.contributor.author Azmi, Randi -
dc.contributor.author Oh, Seung-Hwan -
dc.contributor.author Jang, Sung-Yeon -
dc.date.accessioned 2023-12-21T22:42:26Z -
dc.date.available 2023-12-21T22:42:26Z -
dc.date.created 2019-05-16 -
dc.date.issued 2017-01 -
dc.description.abstract High-efficiency colloidal quantum dot (CQD)/organic hybrid tandem photovoltaic devices (HT-PVs) are developed through a low-temperature solution process. PbS-CQDs and blends of PTB7-Th/PC71BM are used as the active materials for front-and back-cells, respectively. The effective series connection of the two heterogeneous sub-cells is successfully achieved using MoOx/Au/ZnO-based intermediate recombination layers (IMLs). By fine-tuning the current densities in the sub-cells and optimizing the IMLs by balancing the optical and electrical properties, HT-PVs with power conversion efficiency (PCE) of 8.27% (V-OC of 1.27 V, J(SC) of 10.36 mA cm(-2), and FF of 0.63) are achieved. Furthermore, the fabrication of HT-PVs is achievable in ambient atmospheric conditions without thermal annealing that have comparable PCE (7.64%). The PCEs exhibited by these HT-PVs are thus far the highest values reported for CQD-based tandem photovoltaic devices. -
dc.identifier.bibliographicCitation NANO ENERGY, v.31, pp.403 - 409 -
dc.identifier.doi 10.1016/j.nanoen.2016.10.067 -
dc.identifier.issn 2211-2855 -
dc.identifier.scopusid 2-s2.0-84999663711 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/26777 -
dc.identifier.url https://www.sciencedirect.com/science/article/pii/S2211285516305389?via%3Dihub -
dc.identifier.wosid 000393446500045 -
dc.language 영어 -
dc.publisher ELSEVIER SCIENCE BV -
dc.title Solution-processed colloidal quantum dot/organic hybrid tandem photovoltaic devices with 8.3% efficiency -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Colloidal quantum dot photovoltaic -
dc.subject.keywordAuthor Organic photovoltaic -
dc.subject.keywordAuthor Lead sulfide -
dc.subject.keywordAuthor Hybrid tandem solar cell -
dc.subject.keywordAuthor Intermediate layer -
dc.subject.keywordPlus POLYMER SOLAR-CELLS -
dc.subject.keywordPlus POWER CONVERSION EFFICIENCY -
dc.subject.keywordPlus LOW-BANDGAP POLYMER -
dc.subject.keywordPlus EXCEEDING 11-PERCENT -
dc.subject.keywordPlus DOT -
dc.subject.keywordPlus PERFORMANCE -
dc.subject.keywordPlus ABSORPTION -
dc.subject.keywordPlus FILMS -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.