File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

곽상규

Kwak, Sang Kyu
Kyu’s MolSim Lab @ UNIST
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 1 -
dc.citation.startPage 1723 -
dc.citation.title NATURE COMMUNICATIONS -
dc.citation.volume 10 -
dc.contributor.author Oh, Nam Khen -
dc.contributor.author Kim, Changmin -
dc.contributor.author Lee, Junghyun -
dc.contributor.author Kwon, Ohhun -
dc.contributor.author Choi, Yunseong -
dc.contributor.author Jung, Gwan Yeong -
dc.contributor.author Lim, Hyeong Yong -
dc.contributor.author Kwak, Sang Kyu -
dc.contributor.author Kim, Guntae -
dc.contributor.author Park, Hyesung -
dc.date.accessioned 2023-12-21T19:15:53Z -
dc.date.available 2023-12-21T19:15:53Z -
dc.date.created 2019-03-12 -
dc.date.issued 2019-04 -
dc.description.abstract Developing efficient bifunctional catalysts for overall water splitting that are earth-abundant, cost-effective, and durable is of considerable importance from the practical perspective to mitigate the issues associated with precious metal-based catalysts. Herein, we introduce a heterostructure comprising perovskite oxides (La0.5Sr0.5CoO3–δ) and molybdenum diselenide (MoSe2) as an electrochemical catalyst for overall water electrolysis. Interestingly, formation of the heterostructure of La0.5Sr0.5CoO3–δ and MoSe2 induces a local phase transition in MoSe2, 2 H to 1 T phase, and more electrophilic La0.5Sr0.5CoO3–δ with partial oxidation of the Co cation owing to electron transfer from Co to Mo. Together with these synergistic effects, the electrochemical activities are significantly improved for both hydrogen and oxygen evolution reactions. In the overall water splitting operation, the heterostructure showed excellent stability at the high current density of 100 mA cm−2 over 1,000 h, which is exceptionally better than the stability of the state-of-the-art platinum and iridium oxide couple. -
dc.identifier.bibliographicCitation NATURE COMMUNICATIONS, v.10, no.1, pp.1723 -
dc.identifier.doi 10.1038/s41467-019-09339-y -
dc.identifier.issn 2041-1723 -
dc.identifier.scopusid 2-s2.0-85064261312 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/26590 -
dc.identifier.url https://www.nature.com/articles/s41467-019-09339-y -
dc.identifier.wosid 000464338100034 -
dc.language 영어 -
dc.publisher NATURE PUBLISHING GROUP -
dc.title In-situ local phase-transitioned MoSe2 in La0.5Sr0.5CoO3-δ heterostructure and stable overall water electrolysis over 1000 hours -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Multidisciplinary Sciences -
dc.relation.journalResearchArea Science & Technology - Other Topics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus BIFUNCTIONAL CATALYST -
dc.subject.keywordPlus OXYGEN -
dc.subject.keywordPlus NANOSHEETS -
dc.subject.keywordPlus ELECTROCATALYSTS -
dc.subject.keywordPlus ENHANCEMENT -
dc.subject.keywordPlus STABILITY -
dc.subject.keywordPlus CATHODE -
dc.subject.keywordPlus OXIDE -
dc.subject.keywordPlus WS2 -
dc.subject.keywordPlus HYDROGEN EVOLUTION REACTION -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.