File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

권영국

Kwon, Youngkook
Electrochemistry Lab for Energy and Environment
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 2427 -
dc.citation.number 3 -
dc.citation.startPage 2420 -
dc.citation.title ACS CATALYSIS -
dc.citation.volume 8 -
dc.contributor.author Lim, Hyung-Kyu -
dc.contributor.author Kwon, Youngkook -
dc.contributor.author Kim, Han Seul -
dc.contributor.author Jeon, Jiwon -
dc.contributor.author Kim, Yong-Hoon -
dc.contributor.author Lim, Jung-Ae -
dc.contributor.author Kim, Beom-Sik -
dc.contributor.author Choi, Jina -
dc.contributor.author Kim, Hyungjun -
dc.date.accessioned 2023-12-21T21:06:51Z -
dc.date.available 2023-12-21T21:06:51Z -
dc.date.created 2019-04-17 -
dc.date.issued 2018-03 -
dc.description.abstract Recently, many experimental and theoretical efforts are being intensified to develop high-performance catalysts for electrochemical CO2 conversion. Beyond the catalyst material screening, it is also critical to optimize the surrounding reaction medium, From vast experiments, inclusion of room-temperature ionic liquid (RTIL) in the electrolyte is found to be beneficial for CO2 conversion; however, there is no unified picture of the role of RTIL, prohibiting further optimization of the reaction medium. Using a state-of-the-art multiscale simulation, we here unveil the atomic origin of the catalytic promotion effect of RTIL during CO2 conversion. Unlike the conventional belief, which assumes a specific intermolecular coordination by the RTIL component, we find that the promotion effect is collectively manifested by tuning the reaction microenvironment. This mechanism suggests the critical importance of the bulk properties (e.g., resistance, gas solubility and diffusivity, viscosity, etc.) over the detailed chemical variations of the RTIL components in designing the optimal electrolyte components, which is further supported by our experiments. This fundamental understanding of complex electrochemical interfaces will help in the development of more advanced electrochemical CO2 conversion catalytic systems in the future. -
dc.identifier.bibliographicCitation ACS CATALYSIS, v.8, no.3, pp.2420 - 2427 -
dc.identifier.doi 10.1021/acscatal.7b03777 -
dc.identifier.issn 2155-5435 -
dc.identifier.scopusid 2-s2.0-85042915867 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/26561 -
dc.identifier.url https://pubs.acs.org/doi/10.1021/acscatal.7b03777 -
dc.identifier.wosid 000426804100089 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Insight into the Microenvironments of the Metal-Ionic Liquid Interface during Electrochemical CO2 Reduction -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Physical -
dc.relation.journalResearchArea Chemistry -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor reaction mechanism -
dc.subject.keywordAuthor electrocatalysis -
dc.subject.keywordAuthor ionic liquids -
dc.subject.keywordAuthor multiscale simulation -
dc.subject.keywordAuthor solid-liquid interface -
dc.subject.keywordPlus CARBON-DIOXIDE -
dc.subject.keywordPlus MOLECULAR-DYNAMICS -
dc.subject.keywordPlus FORCE-FIELD -
dc.subject.keywordPlus SILVER ELECTRODE -
dc.subject.keywordPlus IMIDAZOLIUM -
dc.subject.keywordPlus CONVERSION -
dc.subject.keywordPlus ELECTROREDUCTION -
dc.subject.keywordPlus OPPORTUNITIES -
dc.subject.keywordPlus CHALLENGES -
dc.subject.keywordPlus SURFACES -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.