File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

정후영

Jeong, Hu Young
UCRF Electron Microscopy group
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 1351 -
dc.citation.number 4 -
dc.citation.startPage 1347 -
dc.citation.title JOURNAL OF MATERIALS CHEMISTRY -
dc.citation.volume 22 -
dc.contributor.author Yoon, Jong Moon -
dc.contributor.author Jeong, Hu Young -
dc.contributor.author Hong, Sung Hoon -
dc.contributor.author Yin, You -
dc.contributor.author Moon, Hyoung Seok -
dc.contributor.author Jeong, Seong-Jun -
dc.contributor.author Han, Jun Hee -
dc.contributor.author Kim, Yong In -
dc.contributor.author Kim, Yong Tae -
dc.contributor.author Lee, Heon -
dc.contributor.author Kim, Sang Ouk -
dc.contributor.author Lee, Jeong Yong -
dc.date.accessioned 2023-12-22T05:37:24Z -
dc.date.available 2023-12-22T05:37:24Z -
dc.date.created 2013-06-24 -
dc.date.issued 2012-01 -
dc.description.abstract We demonstrate the fabrication and phase change memory performance of a conical TiN/Ge(2)Sb(2)Te(5) (GST)/TiN nanoarray prepared via block copolymer lithography and straightforward two-step etching. The created 30 nm scale phase change memory cell (aerial array density: similar to 207 Gbit inch(-2)) showed a threshold switching voltage of 1.1 V, a value compatible to conventional phase change memory cells. More significantly, the cell could be amorphized by a reset pulse of 1.8 V height and 100 ns width, where the reset current was 100 mu A. Such a low reset current, presumably caused by nanoscale small cell dimension, is greatly beneficial for low power consumption device operation. Reversibly, the set operation was accomplished by crystallization with a set pulse of 1.2 V height, 100 ns width, and 100 ns trailing. This work provides a significant step for low power consumption and ultra-high density storage based on phase change materials. -
dc.identifier.bibliographicCitation JOURNAL OF MATERIALS CHEMISTRY, v.22, no.4, pp.1347 - 1351 -
dc.identifier.doi 10.1039/c1jm14190b -
dc.identifier.issn 0959-9428 -
dc.identifier.scopusid 2-s2.0-84855398683 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/2638 -
dc.identifier.url http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84855398683 -
dc.identifier.wosid 000298878100015 -
dc.language 영어 -
dc.publisher ROYAL SOC CHEMISTRY -
dc.title Large-area, scalable fabrication of conical TiN/GST/TiN nanoarray for low-power phase change memory -
dc.type Article -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Materials Science -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.