File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김대식

Kim, Dai-Sik
Nano Optics Group
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 1 -
dc.citation.startPage 4914 -
dc.citation.title NATURE COMMUNICATIONS -
dc.citation.volume 9 -
dc.contributor.author Kang, Taehee -
dc.contributor.author Kim, R. H. Joon-Yeon -
dc.contributor.author Choi, Geunchang -
dc.contributor.author Lee, Jaiu -
dc.contributor.author Park, Hyunwoo -
dc.contributor.author Jeon, Hyeongtag -
dc.contributor.author Park, Cheol-Hwan -
dc.contributor.author Kim, Dai-Sik -
dc.date.accessioned 2023-12-21T19:52:51Z -
dc.date.available 2023-12-21T19:52:51Z -
dc.date.created 2019-03-11 -
dc.date.issued 2018-11 -
dc.description.abstract Tunneling is the most fundamental quantum mechanical phenomenon with wide-ranging applications. Matter waves such as electrons in solids can tunnel through a one-dimensional potential barrier, e.g. an insulating layer sandwiched between conductors. A general approach to control tunneling currents is to apply voltage across the barrier. Here, we form closed loops of tunneling barriers exposed to external optical control to manipulate ultrafast tunneling electrons. Eddy currents induced by incoming electromagnetic pulses project upon the ring, spatiotemporally changing the local potential. The total tunneling current which is determined by the sum of contributions from all the parts along the perimeter is critically dependent upon the symmetry of the loop and the polarization of the incident fields, enabling full-wave rectification of terahertz pulses. By introducing global geometry and local operation to current-driven circuitry, our work provides a novel platform for ultrafast optoelectronics, macroscopic quantum phenomena, energy harvesting, and multi-functional quantum devices. -
dc.identifier.bibliographicCitation NATURE COMMUNICATIONS, v.9, no.1, pp.4914 -
dc.identifier.doi 10.1038/s41467-018-07365-W -
dc.identifier.issn 2041-1723 -
dc.identifier.scopusid 2-s2.0-85056947487 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/26347 -
dc.identifier.url https://www.nature.com/articles/s41467-018-07365-w -
dc.identifier.wosid 000450754900009 -
dc.language 영어 -
dc.publisher NATURE PUBLISHING GROUP -
dc.title Terahertz rectification in ring-shaped quantum barriers -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Multidisciplinary Sciences -
dc.relation.journalResearchArea Science & Technology - Other Topics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus TUNNEL-JUNCTION -
dc.subject.keywordPlus ELECTRIC-FIELDS -
dc.subject.keywordPlus ANGSTROM -
dc.subject.keywordPlus TIME -
dc.subject.keywordPlus REGIME -
dc.subject.keywordPlus DIODE -
dc.subject.keywordPlus NANOMETER-SIZED GAPS -
dc.subject.keywordPlus FIELD ENHANCEMENT -
dc.subject.keywordPlus INFRARED FREQUENCIES -
dc.subject.keywordPlus ATTOSECOND CONTROL -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.