File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

박형렬

Park, Hyeong‐Ryeol
Laboratory for Ultrafast & Nanoscale Plasmonics
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.startPage 2361 -
dc.citation.title NATURE COMMUNICATIONS -
dc.citation.volume 4 -
dc.contributor.author Chen, Xiaoshu -
dc.contributor.author Park, Hyeong-Ryeol -
dc.contributor.author Pelton, Matthew -
dc.contributor.author Piao, Xianji -
dc.contributor.author Lindquist, Nathan C. -
dc.contributor.author Im, Hyungsoon -
dc.contributor.author Kim, Yun Jung -
dc.contributor.author Ahn, Jae Sung -
dc.contributor.author Ahn, Kwang Jun -
dc.contributor.author Park, Namkyoo -
dc.contributor.author Kim, Dai-Sik -
dc.contributor.author Oh, Sang-Hyun -
dc.date.accessioned 2023-12-22T03:37:26Z -
dc.date.available 2023-12-22T03:37:26Z -
dc.date.created 2019-03-08 -
dc.date.issued 2013-09 -
dc.description.abstract Squeezing light through nanometre-wide gaps in metals can lead to extreme field enhancements, nonlocal electromagnetic effects and light-induced electron tunnelling. This intriguing regime, however, has not been readily accessible to experimentalists because of the lack of reliable technology to fabricate uniform nanogaps with atomic-scale resolution and high throughput. Here we introduce a new patterning technology based on atomic layer deposition and simple adhesive-tape-based planarization. Using this method, we create vertically oriented gaps in opaque metal films along the entire contour of a millimetre-sized pattern, with gap widths as narrow as 9.9 angstrom, and pack 150,000 such devices on a 4-inch wafer. Electromagnetic waves pass exclusively through the nanogaps, enabling background-free transmission measurements. We observe resonant transmission of near-infrared waves through 1.1-nm-wide gaps (lambda/1,295) and measure an effective refractive index of 17.8. We also observe resonant transmission of millimetre waves through 1.1-nm-wide gaps (lambda/4,000,000) and infer an unprecedented field enhancement factor of 25,000. -
dc.identifier.bibliographicCitation NATURE COMMUNICATIONS, v.4, pp.2361 -
dc.identifier.doi 10.1038/ncomms3361 -
dc.identifier.issn 2041-1723 -
dc.identifier.scopusid 2-s2.0-84884171914 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/26326 -
dc.identifier.url https://www.nature.com/articles/ncomms3361 -
dc.identifier.wosid 000325531000001 -
dc.language 영어 -
dc.publisher NATURE PUBLISHING GROUP -
dc.title Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Multidisciplinary Sciences -
dc.relation.journalResearchArea Science & Technology - Other Topics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus ENHANCED RAMAN-SPECTROSCOPY -
dc.subject.keywordPlus OPTICAL-TRANSMISSION -
dc.subject.keywordPlus PLASMONIC NANOGAP -
dc.subject.keywordPlus FIELD ENHANCEMENT -
dc.subject.keywordPlus LIGHT -
dc.subject.keywordPlus GUIDES -
dc.subject.keywordPlus DEPOSITION -
dc.subject.keywordPlus APERTURES -
dc.subject.keywordPlus QUANTUM -
dc.subject.keywordPlus FILMS -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.