File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

박형렬

Park, Hyeong‐Ryeol
Laboratory for Ultrafast & Nanoscale Plasmonics
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 424 -
dc.citation.number 3 -
dc.citation.startPage 417 -
dc.citation.title ACS PHOTONICS -
dc.citation.volume 2 -
dc.contributor.author Park, Hyeong-Ryeol -
dc.contributor.author Chen, Xiaoshu -
dc.contributor.author Ngoc-Cuong Nguyen -
dc.contributor.author Peraire, Jaime -
dc.contributor.author Oh, Sang-Hyun -
dc.date.accessioned 2023-12-22T01:36:46Z -
dc.date.available 2023-12-22T01:36:46Z -
dc.date.created 2019-03-08 -
dc.date.issued 2015-03 -
dc.description.abstract We experimentally show that terahertz (THz) waves confined in sub-10 nm metallic gaps can detect refractive index changes caused by only a 1 nm thick (similar to lambda/106) dielectric overlayer. We use atomic layer lithography to fabricate a wafer-scale array of annular nanogaps. Using THz time-domain spectroscopy in conjunction with atomic layer deposition, we measure spectral shifts of a THz resonance peak with increasing Al2O3 film thickness in 1 nm intervals. Because of the enormous mismatch in length scales between THz waves and sub-10 nm gaps, conventional modeling techniques cannot readily be used to analyze our results. We employ an advanced finite-element-modeling (FEM) technique, Hybridizable Discontinuous Galerkin (HDG) scheme, for full three-dimensional modeling of the resonant transmission of THz waves through an annular gap that is 2 nm in width and 32 mu m in diameter. Our multiscale 3D FEM technique and atomic layer lithography will enable a series of new investigations in THz nanophotonics that has not been possible before. -
dc.identifier.bibliographicCitation ACS PHOTONICS, v.2, no.3, pp.417 - 424 -
dc.identifier.doi 10.1021/ph500464j -
dc.identifier.issn 2330-4022 -
dc.identifier.scopusid 2-s2.0-84925652087 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/26317 -
dc.identifier.url https://pubs.acs.org/doi/10.1021/ph500464j -
dc.identifier.wosid 000351419600014 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Nanogap-Enhanced Terahertz Sensing of 1 nm Thick (lambda/10(6)) Dielectric Films -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Optics; Physics, Applied; Physics, Condensed Matter -
dc.relation.journalResearchArea Science & Technology - Other Topics; Materials Science; Optics; Physics -
dc.type.docType Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor nanogap -
dc.subject.keywordAuthor thin-film sensing -
dc.subject.keywordAuthor atomic layer deposition -
dc.subject.keywordAuthor atomic layer lithography -
dc.subject.keywordAuthor finite element modeling -
dc.subject.keywordAuthor Hybridizable Discontinuous Galerkin (HDG) method -
dc.subject.keywordAuthor terahertz nanophotonics -
dc.subject.keywordPlus DISCONTINUOUS GALERKIN METHODS -
dc.subject.keywordPlus EXTRAORDINARY OPTICAL-TRANSMISSION -
dc.subject.keywordPlus TIME-DOMAIN SPECTROSCOPY -
dc.subject.keywordPlus ATOMIC LAYER DEPOSITION -
dc.subject.keywordPlus HARMONIC MAXWELL EQUATIONS -
dc.subject.keywordPlus SPOOF PLASMON SURFACES -
dc.subject.keywordPlus LIGHT TRANSMISSION -
dc.subject.keywordPlus ELLIPTIC PROBLEMS -
dc.subject.keywordPlus NANOHOLE ARRAYS -
dc.subject.keywordPlus RESONANCE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.