File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김지현

Kim, Ji Hyun
UNIST Nuclear Innovative Materials Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 14 -
dc.citation.number 9 -
dc.citation.startPage 1 -
dc.citation.title JOURNAL OF APPLIED PHYSICS -
dc.citation.volume 106 -
dc.contributor.author Kim, Ji Hyun -
dc.contributor.author Bang, In Cheol -
dc.contributor.author Buongiorno, Jacopo -
dc.contributor.author Venerus, David C. -
dc.contributor.author Prabhat, Naveen -
dc.contributor.author McKrell, Thomas -
dc.contributor.author Townsend, Jessica -
dc.contributor.author Christianson, Rebecca -
dc.contributor.author Tolmachev, Yuriy V. -
dc.contributor.author Keblinski, Pawel -
dc.contributor.author Hu, Lin-wen -
dc.contributor.author Alvarado, Jorge L. -
dc.contributor.author Bishnoi, Sandra W. -
dc.contributor.author Bonetti, Marco -
dc.contributor.author Botz, Frank -
dc.contributor.author Cecere, Anselmo -
dc.contributor.author Chang, Yun -
dc.contributor.author Chen, Gany -
dc.contributor.author Chen, Haisheng -
dc.contributor.author Chung, Sung Jae -
dc.contributor.author Chyu, Minking K. -
dc.contributor.author Das, Sarit K. -
dc.contributor.author Di Paola, Roberto -
dc.contributor.author Ding, Yulong -
dc.contributor.author Dubois, Frank -
dc.contributor.author Dzido, Grzegorz -
dc.contributor.author Eapen, Jacob -
dc.contributor.author Escher, Werner -
dc.contributor.author Funfschilling, Denis -
dc.contributor.author Galand, Quentin -
dc.contributor.author Gao, Jinwei -
dc.contributor.author Gharagozloo, Patricia E. -
dc.contributor.author Goodson, Kenneth E. -
dc.contributor.author Gutierrez, Jorge Gustavo -
dc.contributor.author Hong, Haiping -
dc.contributor.author Horton, Mark -
dc.contributor.author Hwang, Kyo Sik -
dc.contributor.author Iorio, Carlo S. -
dc.contributor.author Jang, Seok Pil -
dc.contributor.author Jarzebski, Andrzej B. -
dc.contributor.author Jiang, Yiran -
dc.contributor.author Jin, Liwen -
dc.contributor.author Kabelac, Stephan -
dc.contributor.author Kamath, Aravind -
dc.contributor.author Kedzierski, Mark A. -
dc.contributor.author Kieng, Lim Geok -
dc.contributor.author Kim, Chongyoup -
dc.contributor.author Kim, Seokwon -
dc.contributor.author Lee, Seung Hyun -
dc.contributor.author Leong, Kai Choong -
dc.contributor.author Manna, Indranil -
dc.contributor.author Michel, Bruno -
dc.contributor.author Ni, Rui -
dc.contributor.author Patel, Hrishikesh E. -
dc.contributor.author Philip, John -
dc.contributor.author Poulikakos, Dimos -
dc.contributor.author Reynaud, Cecile -
dc.contributor.author Savino, Raffaele -
dc.contributor.author Singh, Pawan K. -
dc.contributor.author Song, Pengxiang -
dc.contributor.author Sundararajan, Thirumalachari -
dc.contributor.author Timofeeva, Elena -
dc.contributor.author Tritcak, Todd -
dc.contributor.author Turanov, Aleksandr N. -
dc.contributor.author Van Vaerenbergh, Stefan -
dc.contributor.author Wen, Dongsheng -
dc.contributor.author Witharana, Sanjeeva -
dc.contributor.author Yang, Chun -
dc.contributor.author Yeh, Wei-Hsun -
dc.contributor.author Zhao, Xiao-Zheng -
dc.contributor.author Zhou, Sheng-Qi -
dc.date.accessioned 2023-12-22T07:38:22Z -
dc.date.available 2023-12-22T07:38:22Z -
dc.date.created 2013-05-29 -
dc.date.issued 2009-11 -
dc.description.abstract This article reports or, the international Nanofluid Property Benchmark Exercise, or INPBE. in which the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or "nanofluids", was measured by over 30 organizations worldwide, using, a variety of experimental approaches, including the transient hot wire method, steady-state methods, and optical methods. The nanofluids tested in the exercise were comprised of aqueous and nonaqueous basefluids, metal and metal oxide particles, near-spherical and elongated particles, at low and high particle concentrations. The data analysis reveals that the data from most organizations lie within a relatively narrow band (+/- 10% or less) about the sample average with only few outliers. The thermal conductivity of the nanofluids was found to increase with particle concentration and aspect ratio. as expected from classical theory. There are (small) systematic differences in the absolute values of the nanofluid thermal conductivity among the various experimental approaches; however. such differences tend to disappear when the data are normalized to the Measured thermal conductivity of the basefluid. The effective medium theory developed for dispersed particles by Maxwell in 1881 and recently generalized by Nan et al. [J. Appl. Phys. 81, 6692 (1997)], was found to be in good agreement with the experimental data, suggesting that no anomalous enhancement of thermal conductivity was achieved in the nanofluids tested in this exercise. -
dc.identifier.bibliographicCitation JOURNAL OF APPLIED PHYSICS, v.106, no.9, pp.1 - 14 -
dc.identifier.doi 10.1063/1.3245330 -
dc.identifier.issn 0021-8979 -
dc.identifier.scopusid 2-s2.0-70349607220 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/2593 -
dc.identifier.url https://aip.scitation.org/doi/10.1063/1.3245330 -
dc.identifier.wosid 000272555700090 -
dc.language 영어 -
dc.publisher AMER INST PHYSICS -
dc.title A benchmark study on the thermal conductivity of nanofluids -
dc.type Article -
dc.relation.journalWebOfScienceCategory Physics, Applied -
dc.relation.journalResearchArea Physics -
dc.description.journalRegisteredClass scopus -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.