File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 1105 -
dc.citation.number 4 -
dc.citation.startPage 1100 -
dc.citation.title ANGEWANDTE CHEMIE-INTERNATIONAL EDITION -
dc.citation.volume 58 -
dc.contributor.author Sa, Young Jin -
dc.contributor.author Kim, Jae Hyung -
dc.contributor.author Joo, Sang Hoon -
dc.date.accessioned 2023-12-21T19:42:19Z -
dc.date.available 2023-12-21T19:42:19Z -
dc.date.created 2019-02-07 -
dc.date.issued 2019-01 -
dc.description.abstract A highly efficient, metal-free carbon nanocatalyst is presented that possesses abundant active, oxygenated graphitic edge sites. The edge site-rich nanocarbon catalyst exhibits about 28 times higher activity for H2O2 production than a basal plane-rich carbon nanotube with a H2O2 selectivity over 90 %. The oxidative treatment further promotes the H2O2 generation activity to reach close to the thermodynamic limit. The optimized nanocarbon catalyst shows a very high H2O2 production activity, surpassing previously reported catalysts in alkaline media. Moreover, it can stably produce H2O2 for 16 h with Faradaic efficiency reaching 99 % and accumulated H2O2 concentration of 24 +/- 2 mm. Importantly, we find that the heterogeneous electron transfer kinetics of the carbon-based catalyst is closely related to the electrocatalytic activity, suggesting that first outer-sphere electron transfer to O-2 is an important step governing the H2O2 production rate. -
dc.identifier.bibliographicCitation ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, v.58, no.4, pp.1100 - 1105 -
dc.identifier.doi 10.1002/anie.201812435 -
dc.identifier.issn 1433-7851 -
dc.identifier.scopusid 2-s2.0-85058931338 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/25845 -
dc.identifier.url https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201812435 -
dc.identifier.wosid 000456260200024 -
dc.language 영어 -
dc.publisher WILEY-V C H VERLAG GMBH -
dc.title Active Edge-Site-Rich Carbon Nanocatalysts with Enhanced Electron Transfer for Efficient Electrochemical Hydrogen Peroxide Production -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary -
dc.relation.journalResearchArea Chemistry -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor carbon nanomaterials -
dc.subject.keywordAuthor electrocatalysts -
dc.subject.keywordAuthor electron transfer -
dc.subject.keywordAuthor hydrogen peroxide -
dc.subject.keywordAuthor oxygen reduction -
dc.subject.keywordPlus OXYGEN REDUCTION -
dc.subject.keywordPlus H2O2 -
dc.subject.keywordPlus SELECTIVITY -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.