File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

박노정

Park, Noejung
Computational Physics & Electronic Structure Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Anomalous K-Point Phonons in Noble Metal/Graphene Heterostructure Activated by Localized Surface Plasmon Resonance

Author(s)
Kim, Un JeongKim, Jun SukPark, NoejungLee, SanghyubPark, YeonsangSeok, JinbongHwang, SungwooSon, HyungbinLee, Young Hee
Issued Date
2018-12
DOI
10.1021/acsnano.8b07761
URI
https://scholarworks.unist.ac.kr/handle/201301/25611
Fulltext
https://pubs.acs.org/doi/10.1021/acsnano.8b07761
Citation
ACS NANO, v.12, no.12, pp.12733 - 12741
Abstract
The metal/graphene interface has been one of the most important research topics with regard to charge screening, charge transfer, contact resistance, and solar cells. Chemical bond formation of metal and graphene can be deduced from the defect induced D-band and its second-order mode, 2D band, measured by Raman spectroscopy, as a simple and nondestructive method. However, a phonon mode located at ∼1350 cm-1, which is normally known as the defect-induced D-band, is intriguing for graphene deposited with noble metals (Ag, Au, and Cu). We observe anomalous K-point phonons in nonreactive noble metal/graphene heterostructures. The intensity ratio of the midfrequency mode at ∼1350 cm-1 over G-band (∼1590 cm-1) exhibits nonlinear but resonant behavior with the excitation laser wavelength, and more importantly, the phonon frequency-laser energy dispersion is ∼10-17 cm-1 eV-1, which is much less than the conventional range. These phonon modes of graphene at nonzero phonon wave vector (q ≠ 0) around K points are activated by localized surface plasmon resonance and not by the defects due to chemical bond formation of metal/graphene. This hypothesis is supported by density functional theory (DFT) calculations for noble metals and Cr along with the measured contact resistances.
Publisher
AMER CHEMICAL SOC
ISSN
1936-0851
Keyword (Author)
graphenenoble metalRamanK-point phononlocalized surface plasmon
Keyword
LIMITSGOLDTOTAL-ENERGY CALCULATIONSMETAL-GRAPHENECONTACT RESISTANCERAMAN-SCATTERINGCARBON NANOTUBESWORK FUNCTIONDEVICES

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.