File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

오현철

Oh, Hyunchul
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 20 -
dc.citation.startPage 1805293 -
dc.citation.title ADVANCED MATERIALS -
dc.citation.volume 31 -
dc.contributor.author Kim, Jin Yeong -
dc.contributor.author Oh, Hyunchul -
dc.contributor.author Moon, Hoi Ri -
dc.date.accessioned 2023-12-21T19:11:52Z -
dc.date.available 2023-12-21T19:11:52Z -
dc.date.created 2019-01-03 -
dc.date.issued 2019-05 -
dc.description.abstract One of the greatest challenges of modern separation technology is separating isotope mixtures in high purity. The separation of hydrogen isotopes can create immense economic value by producing valuable deuterium (D) and tritium (T), which are irreplaceable for various industrial and scientific applications. However, current separation methods suffer from low separation efficiency owing to the similar chemical properties of isotopes; thus, high‐purity isotopes are not easily achieved. Recently, nanoporous materials have been proposed as promising candidates and are supported by a newly proposed separation mechanism, i.e., quantum effects. Herein, the fundamentals of the quantum sieving effect of hydrogen isotopes in nanoporous materials are discussed, which are mainly kinetic quantum sieving and chemical‐affinity quantum sieving, including the recent advances in the analytical techniques. As examples of nanoporous materials, carbons, zeolites, metal–organic frameworks, and covalent organic frameworks are addressed from computational and experimental standpoints. Understanding the quantum sieving effect in nanospaces and the tailoring of porous materials based on it will open up new opportunities to develop a highly efficient and advanced isotope separation systems. -
dc.identifier.bibliographicCitation ADVANCED MATERIALS, v.31, no.20, pp.1805293 -
dc.identifier.doi 10.1002/adma.201805293 -
dc.identifier.issn 0935-9648 -
dc.identifier.scopusid 2-s2.0-85059203050 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/25561 -
dc.identifier.url https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201805293 -
dc.identifier.wosid 000471970500013 -
dc.language 영어 -
dc.publisher WILEY-V C H VERLAG GMBH -
dc.title Hydrogen Isotope Separation in Confined Nanospaces: Carbons, Zeolites, Metal-Organic Frameworks, and Covalent Organic Frameworks -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor hydrogen isotopes -
dc.subject.keywordAuthor isotope separation -
dc.subject.keywordAuthor chemical affinity quantum sieving -
dc.subject.keywordAuthor kinetic quantum sieving -
dc.subject.keywordAuthor porous materials -
dc.subject.keywordPlus GAS -
dc.subject.keywordPlus H-2 -
dc.subject.keywordPlus D-2 -
dc.subject.keywordPlus NANOTUBES -
dc.subject.keywordPlus DIFFUSION -
dc.subject.keywordPlus DEUTERIUM -
dc.subject.keywordPlus MEMBRANES -
dc.subject.keywordPlus PRESSURE SWING ADSORPTION -
dc.subject.keywordPlus MOLECULAR-SIEVE -
dc.subject.keywordPlus ACTIVATED CARBON -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.