File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

정후영

Jeong, Hu Young
UCRF Electron Microscopy group
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.number 52 -
dc.citation.startPage 1805606 -
dc.citation.title ADVANCED MATERIALS -
dc.citation.volume 30 -
dc.contributor.author Mahmood, Javeed -
dc.contributor.author Anjum, Mohsin Ali Raza -
dc.contributor.author Shin, Sun‐Hee -
dc.contributor.author Ahmad, Ishfaq -
dc.contributor.author Noh, Hyuk‐Jun -
dc.contributor.author Kim, Seok‐Jin -
dc.contributor.author Jeong, Hu Young -
dc.contributor.author Lee, Jae Sung -
dc.contributor.author Baek, Jong-Beom -
dc.date.accessioned 2023-12-21T19:49:52Z -
dc.date.available 2023-12-21T19:49:52Z -
dc.date.created 2018-12-04 -
dc.date.issued 2018-12 -
dc.description.abstract Developing efficient and durable electrocatalysts is key to optimizing the electrocatalytic hydrogen evolution reaction (HER), currently one of the cleanest and most sustainable routes for producing hydrogen. Here, a unique and efficient approach to fabricate and embed uniformly dispersed Ir nanoparticles in a 3D cage-like organic network (CON) structure is reported. These uniformly trapped Ir nanoparticles within the 3D CON (Ir@CON) effectively catalyze the HER process. The Ir@CON electrocatalyst exhibits high turnover frequencies of 0.66 and 0.20 H2 s−1 at 25 mV and small overpotentials of 13.6 and 13.5 mV while generating a current density of 10 mA cm−2 in 0.5 m H2SO4 and 1.0 m KOH aqueous solutions, respectively, as compared to commercial Pt/C (18 and 23 mV) and Ir/C (20.7 and 28.3 mV). More importantly, the catalyst shows superior stability in both acidic and alkaline media. These results highlight a potentially powerful approach for the design and synthesis of efficient and durable electrocatalysts for HER. -
dc.identifier.bibliographicCitation ADVANCED MATERIALS, v.30, no.52, pp.1805606 -
dc.identifier.doi 10.1002/adma.201805606 -
dc.identifier.issn 0935-9648 -
dc.identifier.scopusid 2-s2.0-85055939632 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/25494 -
dc.identifier.url https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201805606 -
dc.identifier.wosid 000454124800018 -
dc.language 영어 -
dc.publisher WILEY-V C H VERLAG GMBH -
dc.title Encapsulating Iridium Nanoparticles Inside a 3D Cage-Like Organic Network as an Efficient and Durable Catalyst for the Hydrogen Evolution Reaction -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied; Physics, Condensed Matter -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor 3D cages -
dc.subject.keywordAuthor cage-like organic networks -
dc.subject.keywordAuthor durability -
dc.subject.keywordAuthor electrocatalysts -
dc.subject.keywordAuthor hydrogen evolution reaction -
dc.subject.keywordAuthor Ir nanoparticles -
dc.subject.keywordPlus ELECTROLYTIC HYDROGEN -
dc.subject.keywordPlus ELECTROCATALYSTS -
dc.subject.keywordPlus KINETICS -
dc.subject.keywordPlus ADSORPTION -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.