File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

송명훈

Song, Myoung Hoon
Organic Photonics & Optoelectronics Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 12700 -
dc.citation.number 25 -
dc.citation.startPage 12695 -
dc.citation.title JOURNAL OF MATERIALS CHEMISTRY -
dc.citation.volume 22 -
dc.contributor.author Park, Ji Sun -
dc.contributor.author Lee, Ju Min -
dc.contributor.author Hwang, Sun Kak -
dc.contributor.author Lee, Sun Hwa -
dc.contributor.author Lee, Hyun-Jung -
dc.contributor.author Lee, Bo Ram -
dc.contributor.author Park, Hyung Il -
dc.contributor.author Kim, Ji-Seon -
dc.contributor.author Yoo, Seunghyup -
dc.contributor.author Song, Myoung Hoon -
dc.contributor.author Kim, Sang Ouk -
dc.date.accessioned 2023-12-22T05:07:01Z -
dc.date.available 2023-12-22T05:07:01Z -
dc.date.created 2013-06-03 -
dc.date.issued 2012-07 -
dc.description.abstract Metal oxide charge transport layers are widely used to promote the interfacial charge transport of organic optoelectronics. Nevertheless, frequently used wide-bandgap metal oxides with low electrical conductivities reveal inherent limitations in the charge transport enhancement. We present the remarkable electro-conductivity enhancement of solution processable ZnO charge transport layers upon dispersing a tiny amount (less than 0.1 wt%) of chemically doped CNTs and the corresponding device performance improvement of light-emitting diodes (OLEDs). Using various undoped or doped CNTs, whose work function was systematically tuned by substitutional doping of electron deficient B or electron rich N,N-doped CNT (N-CNT), the composite showed a lowered work function matching well with the conduction band of ZnO. Consequently, the ZnO/N-CNT nanocomposite transport layer with 0.08 wt% N-CNT showed a five-fold enhancement of electron mobility, while maintaining the intrinsic bandgap energy levels, optical transparency and solution processability of pure ZnO. The inverted OLEDs employing ZnO/N-CNT nanocomposite electron transport layers could facilitate well-balanced electron-hole injection and, thus, more than two-fold enhancement of maximum luminance (from 21 000 cd m(-2) at 14.6 V to 46 100 cd m(-2) at 14.0 V) and efficiency (from 6.9 cd A(-1) at 13.4 V to 14.3 cd A(-1) at 13.6 V). This highly effective charge mobility enhancement enabled by work function tunable, chemically doped CNTs would be beneficial for various organic and inorganic charge transport materials with different energy levels. -
dc.identifier.bibliographicCitation JOURNAL OF MATERIALS CHEMISTRY, v.22, no.25, pp.12695 - 12700 -
dc.identifier.doi 10.1039/c2jm30710c -
dc.identifier.issn 0959-9428 -
dc.identifier.scopusid 2-s2.0-84862181903 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/2547 -
dc.identifier.url http://pubs.rsc.org/en/Content/ArticleLanding/2012/JM/c2jm30710c#!divAbstract -
dc.identifier.wosid 000304884000040 -
dc.language 영어 -
dc.publisher ROYAL SOC CHEMISTRY -
dc.title A ZnO/N-doped carbon nanotube nanocomposite charge transport layer for high performance optoelectronics -
dc.type Article -
dc.relation.journalWebOfScienceCategory Chemistry, Physical; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Materials Science -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus LIGHT-EMITTING-DIODES -
dc.subject.keywordPlus ELECTRON INJECTION -
dc.subject.keywordPlus SOLAR-CELLS -
dc.subject.keywordPlus METAL-OXIDE -
dc.subject.keywordPlus DEVICES -
dc.subject.keywordPlus GRAPHENE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.