File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김동혁

Kim, Donghyuk
Systems Biology and Machine Learning Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 9480 -
dc.citation.number 22 -
dc.citation.startPage 9471 -
dc.citation.title APPLIED MICROBIOLOGY AND BIOTECHNOLOGY -
dc.citation.volume 102 -
dc.contributor.author Kim, Donghyuk -
dc.contributor.author Woo, Han Min -
dc.date.accessioned 2023-12-21T20:07:10Z -
dc.date.available 2023-12-21T20:07:10Z -
dc.date.created 2018-11-15 -
dc.date.issued 2018-11 -
dc.description.abstract The goal of sustainable production of biochemicals and biofuels has driven the engineering of microbial cell as factories that convert low-value substrates to high-value products. Xylose is the second most abundant sugar substrate in lignocellulosic hydrolysates. We analyzed the mechanisms of xylose metabolism using genome sequencing data of 492 industrially relevant bacterial species in the mini-review. The analysis revealed the xylose isomerase and Weimberg pathways as the major routes across diverse routes of bacterial xylose metabolism. In addition, we discuss recent developments in metabolic engineering of xylose metabolism in industrial microorganisms. Genome-scale analyses have revealed xylose pathway-specific flux landscapes. Overall, a comprehensive understanding of bacterial xylose metabolism could be useful for the feasible development of microbial cell factories. -
dc.identifier.bibliographicCitation APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, v.102, no.22, pp.9471 - 9480 -
dc.identifier.doi 10.1007/s00253-018-9353-2 -
dc.identifier.issn 0175-7598 -
dc.identifier.scopusid 2-s2.0-85053698435 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/25167 -
dc.identifier.url https://link.springer.com/article/10.1007%2Fs00253-018-9353-2 -
dc.identifier.wosid 000448593800006 -
dc.language 영어 -
dc.publisher SPRINGER -
dc.title Deciphering bacterial xylose metabolism and metabolic engineering of industrial microorganisms for use as efficient microbial cell factories -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Biotechnology & Applied Microbiology -
dc.relation.journalResearchArea Biotechnology & Applied Microbiology -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Xylose -
dc.subject.keywordAuthor Isomerase pathway -
dc.subject.keywordAuthor Weimberg pathway -
dc.subject.keywordAuthor Dahms pathway -
dc.subject.keywordAuthor Corynebacterium glutamicum -
dc.subject.keywordAuthor Escherichia coli -
dc.subject.keywordPlus UTILIZING CORYNEBACTERIUM-GLUTAMICUM -
dc.subject.keywordPlus ESCHERICHIA-COLI K-12 -
dc.subject.keywordPlus PHOSPHOKETOLASE PATHWAY -
dc.subject.keywordPlus SACCHAROMYCES-CEREVISIAE -
dc.subject.keywordPlus GAMMA-VALEROLACTONE -
dc.subject.keywordPlus XYLITOL PRODUCTION -
dc.subject.keywordPlus WEIMBERG PATHWAY -
dc.subject.keywordPlus DAHMS PATHWAY -
dc.subject.keywordPlus BIOMASS -
dc.subject.keywordPlus RECONSTRUCTION -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.