File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

박경덕

Park, Kyoung-Duck
Nano-PhotoEnergy Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 2627 -
dc.citation.number 4 -
dc.citation.startPage 2621 -
dc.citation.title NANO LETTERS -
dc.citation.volume 16 -
dc.contributor.author Park, Kyoung-Duck -
dc.contributor.author Khatib, Omar -
dc.contributor.author Kravtsov, Vasily -
dc.contributor.author Clark, Genevieve -
dc.contributor.author Xu, Xiaodong -
dc.contributor.author Raschke, Markus B. -
dc.date.accessioned 2023-12-21T23:47:58Z -
dc.date.available 2023-12-21T23:47:58Z -
dc.date.created 2018-11-05 -
dc.date.issued 2016-04 -
dc.description.abstract Many classes of two-dimensional (2D) materials have emerged as potential platforms for novel electronic and optical devices. However, their physical properties are strongly influenced by nanoscale heterogeneities in the form of edges, twin boundaries, and nucleation sites. Using combined tip-enhanced Raman scattering and photoluminescence (PL) nanospectroscopy and nanoimaging, we study the associated effects on the excitonic properties in monolayer WSe2 grown by physical vapor deposition. With similar to 15 nm spatial resolution, we resolve nanoscale correlations of PL spectral intensity and shifts with crystal edges and internal twin boundaries associated with the expected exciton diffusion length. Through an active atomic force tip interaction we can control the crystal strain on the nanoscale and tune the local bandgap in reversible (up to 24 meV shift) and irreversible (up to 48 meV shift) fashion. This allows us to distinguish the effect of strain from the dominant influence of defects on the PL modification at the different structural heterogeneities. Hybrid nano-optical spectroscopy and imaging with nanomechanical strain control thus enables the systematic study of the coupling of structural and mechanical degrees of freedom to the nanoscale electronic and optical properties in layered 2D materials. -
dc.identifier.bibliographicCitation NANO LETTERS, v.16, no.4, pp.2621 - 2627 -
dc.identifier.doi 10.1021/acs.nanolett.6b00238 -
dc.identifier.issn 1530-6984 -
dc.identifier.scopusid 2-s2.0-84964853076 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/25123 -
dc.identifier.url https://pubs.acs.org/doi/10.1021/acs.nanolett.6b00238 -
dc.identifier.wosid 000374274600073 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Hybrid Tip-Enhanced Nanospectroscopy and Nanoimaging of Monolayer WSe2 with Local Strain Control -
dc.type Article -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Tip-enhanced photoluminescence (TEPL) -
dc.subject.keywordAuthor tip-enhanced Raman spectroscopy (TERS) -
dc.subject.keywordAuthor transition metal dichalcogenides (TMD) -
dc.subject.keywordAuthor tungsten diselenide (WSe2) -
dc.subject.keywordAuthor strain -
dc.subject.keywordAuthor grain boundary -
dc.subject.keywordPlus TRANSITION-METAL DICHALCOGENIDES -
dc.subject.keywordPlus CHEMICAL-VAPOR-DEPOSITION -
dc.subject.keywordPlus ATOMICALLY THIN MOS2 -
dc.subject.keywordPlus MOLYBDENUM-DISULFIDE -
dc.subject.keywordPlus GRAIN-BOUNDARIES -
dc.subject.keywordPlus ENERGY TRANSFER -
dc.subject.keywordPlus WS2 -
dc.subject.keywordPlus PHOTOLUMINESCENCE -
dc.subject.keywordPlus LAYERS -
dc.subject.keywordPlus SEMICONDUCTOR -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.