File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

김남훈

Kim, Namhun
UNIST Computer-Integrated Manufacturing Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 559 -
dc.citation.number 1 -
dc.citation.startPage 551 -
dc.citation.title CHEMICAL ENGINEERING JOURNAL -
dc.citation.volume 355 -
dc.contributor.author Deka, Biplab K. -
dc.contributor.author Hazarika, Ankita -
dc.contributor.author Kim, Jisoo -
dc.contributor.author Kim, Namhun -
dc.contributor.author Jeong, Hoon Eui -
dc.contributor.author Park, Young-Bin -
dc.contributor.author Park, Hyung Wook -
dc.date.accessioned 2023-12-21T19:45:06Z -
dc.date.available 2023-12-21T19:45:06Z -
dc.date.created 2018-09-29 -
dc.date.issued 2019-01 -
dc.description.abstract Structural supercapacitors provide a variety of opportunities for woven carbon fibers in portable electronics, hybrid automobiles and aerospace applications. We describe herein the synthesis of bimetallic Cu-Co selenide nanowires based on woven carbon fibers, and their use as electrodes in supercapacitors. Woven Kevlar fiber is used as separator for the electrodes and a polyester resin with an ionic liquid and lithium salt is used as solid polymer electrolyte. The supercapacitors exhibit efficient energy storage and significant enhancements in mechanical strength (89.38%) and modulus (70.41%) over those of bare woven carbon fiber base supercapacitors. The specific capacitance of these supercapacitors increases from 0.197 F g(-1) to 28.63 F g(-1) after the growth of nanowires, with accordingly high energy density (191.64 mW h kg(-1)) and power density (36.65 W kg(-1)). In situ mechano-electrochemical tests of these supercapacitors yield excellent capacitance retention (77.3%) at the mechanical failure point (481.29 MPa). -
dc.identifier.bibliographicCitation CHEMICAL ENGINEERING JOURNAL, v.355, no.1, pp.551 - 559 -
dc.identifier.doi 10.1016/j.cej.2018.08.172 -
dc.identifier.issn 1385-8947 -
dc.identifier.scopusid 2-s2.0-85054089186 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/24940 -
dc.identifier.url https://www.sciencedirect.com/science/article/pii/S1385894718316462?via%3Dihub -
dc.identifier.wosid 000445416900053 -
dc.language 영어 -
dc.publisher ELSEVIER SCIENCE SA -
dc.title Bimetallic copper cobalt selenide nanowire-anchored woven carbon fiber-based structural supercapacitors -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Engineering, Environmental; Engineering, Chemical -
dc.relation.journalResearchArea Engineering -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor Structural supercapacitor -
dc.subject.keywordAuthor Multifunctionality -
dc.subject.keywordAuthor Solid electrolyte -
dc.subject.keywordAuthor Electrochemical performance -
dc.subject.keywordAuthor Mechanical property -
dc.subject.keywordPlus HIGH-PERFORMANCE SUPERCAPACITOR -
dc.subject.keywordPlus ENERGY-STORAGE -
dc.subject.keywordPlus ELECTROCHEMICAL PERFORMANCE -
dc.subject.keywordPlus ASYMMETRIC SUPERCAPACITORS -
dc.subject.keywordPlus COMPOSITE SUPERCAPACITORS -
dc.subject.keywordPlus POLYESTER RESIN -
dc.subject.keywordPlus GRAPHENE -
dc.subject.keywordPlus ARRAYS -
dc.subject.keywordPlus ELECTROLYTES -
dc.subject.keywordPlus HYBRID -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.