File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

곽상규

Kwak, Sang Kyu
Kyu’s MolSim Lab @ UNIST
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.startPage 42 -
dc.citation.title COMMUNICATIONS CHEMISTRY -
dc.citation.volume 1 -
dc.contributor.author Song, Gyujin -
dc.contributor.author Ryu, Jaegeon -
dc.contributor.author Kim, Jin Chul -
dc.contributor.author Lee, Jeong Hyeon -
dc.contributor.author Kim, Sungho -
dc.contributor.author Wang, Chongmin -
dc.contributor.author Kwak, Sang Kyu -
dc.contributor.author Park, Soojin -
dc.date.accessioned 2023-12-21T20:20:38Z -
dc.date.available 2023-12-21T20:20:38Z -
dc.date.created 2018-08-13 -
dc.date.issued 2018-08 -
dc.description.abstract The thermochemical reduction of silica to silicon using chemical reductants requires high temperature and has a high activation energy, which depends on the melting temperature of the reductant. The addition of bi-functional molten salts with a low melting temperature may reduce the required energy, and several examples using molten salts have been demonstrated. Here we study the mechanism of reduction of silica in the presence of aluminum metal reductant and aluminum chloride as bi-functional molten salts. An aluminum-aluminum chloride complex plays a key role in the reduction mechanism, reacting with the oxygen of the silica surfaces to lower the heat of reaction and subsequently survives a recycling step in the reaction. This experimentally and theoretically validated reaction mechanism may open a new pathway using bi-functional molten salts. Furthermore, the as-synthesized hollow porous silicon microsphere anodes show structural durability on cycling in both half/full cell tests, attributed to the high volume-accommodating ability. -
dc.identifier.bibliographicCitation COMMUNICATIONS CHEMISTRY, v.1, pp.42 -
dc.identifier.doi 10.1038/s42004-018-0041-z -
dc.identifier.issn 2399-3669 -
dc.identifier.scopusid 2-s2.0-85061247961 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/24555 -
dc.identifier.url https://www.nature.com/articles/s42004-018-0041-z -
dc.identifier.wosid 000442008800001 -
dc.language 영어 -
dc.publisher NATURE PUBLISHING GROUP -
dc.title Revealing salt-expedited reduction mechanism for hollow silicon microsphere formation in bi-functional halide melts -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary -
dc.relation.journalResearchArea Chemistry -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus CHEMICAL-REDUCTION -
dc.subject.keywordPlus SCALABLE SYNTHESIS -
dc.subject.keywordPlus MOLTEN-SALT -
dc.subject.keywordPlus LITHIUM -
dc.subject.keywordPlus SI -
dc.subject.keywordPlus ELECTRODES -
dc.subject.keywordPlus GRAPHITE -
dc.subject.keywordPlus NANOPARTICLES -
dc.subject.keywordPlus CAPACITY -
dc.subject.keywordPlus ANODES -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.