File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

송현곤

Song, Hyun-Kon
eclat: electrochemistry lab of advanced technology
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.startPage 2924 -
dc.citation.title NATURE COMMUNICATIONS -
dc.citation.volume 9 -
dc.contributor.author Ryu, Jaegon -
dc.contributor.author Chen, Tianwu -
dc.contributor.author Bok, Taesoo -
dc.contributor.author Song, Gyujin -
dc.contributor.author Ma, Jiyoung -
dc.contributor.author Hwang, Chihyun -
dc.contributor.author Luo, Langli -
dc.contributor.author Song, Hyun-Kon -
dc.contributor.author Cho, Jaephil -
dc.contributor.author Wang, Chongmin -
dc.contributor.author Zhang, Sulin -
dc.contributor.author Park, Soojin -
dc.date.accessioned 2023-12-21T20:37:33Z -
dc.date.available 2023-12-21T20:37:33Z -
dc.date.created 2018-07-30 -
dc.date.issued 2018-07 -
dc.description.abstract High-theoretical capacity and low working potential make silicon ideal anode for lithium ion batteries. However, the large volume change of silicon upon lithiation/delithiation poses a critical challenge for stable battery operations. Here, we introduce an unprecedented design, which takes advantage of large deformation and ensures the structural stability of the material by developing a two-dimensional silicon nanosheet coated with a thin carbon layer. During electrochemical cycling, this carbon coated silicon nanosheet exhibits unique deformation patterns, featuring accommodation of deformation in the thickness direction upon lithiation, while forming ripples upon delithiation, as demonstrated by in situ transmission electron microscopy observation and chemomechanical simulation. The ripple formation presents a unique mechanism for releasing the cycling induced stress, rendering the electrode much more stable and durable than the uncoated counterparts. This work demonstrates a general principle as how to take the advantage of the large deformation materials for designing high capacity electrode. -
dc.identifier.bibliographicCitation NATURE COMMUNICATIONS, v.9, pp.2924 -
dc.identifier.doi 10.1038/s41467-018-05398-9 -
dc.identifier.issn 2041-1723 -
dc.identifier.scopusid 2-s2.0-85050730064 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/24520 -
dc.identifier.url https://www.nature.com/articles/s41467-018-05398-9 -
dc.identifier.wosid 000439809400004 -
dc.language 영어 -
dc.publisher NATURE PUBLISHING GROUP -
dc.title Mechanical mismatch-driven rippling in carbon-coated silicon sheets for stress-resilient battery anodes -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Multidisciplinary Sciences -
dc.relation.journalResearchArea Science & Technology - Other Topics -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus LITHIUM-ION BATTERIES -
dc.subject.keywordPlus CRYSTALLINE SILICON -
dc.subject.keywordPlus INITIAL LITHIATION -
dc.subject.keywordPlus SCALABLE SYNTHESIS -
dc.subject.keywordPlus HIGH-CAPACITY -
dc.subject.keywordPlus NANOWIRES -
dc.subject.keywordPlus FRACTURE -
dc.subject.keywordPlus NANOPARTICLES -
dc.subject.keywordPlus NANOPILLARS -
dc.subject.keywordPlus NANOSHEETS -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.