File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

박종남

Park, Jongnam
Materials and Chemistry Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 22118 -
dc.citation.number 26 -
dc.citation.startPage 22110 -
dc.citation.title ACS APPLIED MATERIALS & INTERFACES -
dc.citation.volume 10 -
dc.contributor.author Lee, Hyun Ho -
dc.contributor.author Lee, Jae Bin -
dc.contributor.author Park, Yuwon -
dc.contributor.author Park, Kern Ho -
dc.contributor.author Okyay, Mahmut Sait -
dc.contributor.author Shin, Dong-Seon -
dc.contributor.author Kim, Sunghwan -
dc.contributor.author Park, Jongnam -
dc.contributor.author Park, Noejung -
dc.contributor.author An, Byeong-Kwan -
dc.contributor.author Jung, Yoon Seok -
dc.contributor.author Lee, Hyun-Wook -
dc.contributor.author Lee, Kyu Tae -
dc.contributor.author Hong, Sung You -
dc.date.accessioned 2023-12-21T20:37:49Z -
dc.date.available 2023-12-21T20:37:49Z -
dc.date.created 2018-07-17 -
dc.date.issued 2018-07 -
dc.description.abstract Electrode materials exploiting multielectron-transfer processes are essential components for large-scale energy storage systems. Organic-based electrode materials undergoing distinct molecular redox transformations can intrinsically circumvent the structural instability issue of conventional inorganic-based host materials associated with lattice volume expansion and pulverization. Yet, the fundamental mechanistic understanding of metal-organic coordination polymers toward the reversible electrochemical processes is still lacking. Herein, we demonstrate that metal-dependent spatial proximity and binding affinity play a critical role in the reversible redox processes, as verified by combined 13C solid-state NMR, X-ray absorption spectroscopy, and transmission electron microscopy. During the electrochemical lithiation, in situ generated metallic nanoparticles dispersed in the organic matrix generate electrically conductive paths, synergistically aiding subsequent multielectron transfer to π-conjugated ligands. Comprehensive screening on 3d-metal-organic coordination polymers leads to a high-capacity electrode material, cobalt-2,5-thiophenedicarboxylate, which delivers a stable specific capacity of ∼1100 mA h g-1 after 100 cycles. -
dc.identifier.bibliographicCitation ACS APPLIED MATERIALS & INTERFACES, v.10, no.26, pp.22110 - 22118 -
dc.identifier.doi 10.1021/acsami.8b04678 -
dc.identifier.issn 1944-8244 -
dc.identifier.scopusid 2-s2.0-85048717101 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/24422 -
dc.identifier.url https://pubs.acs.org/doi/10.1021/acsami.8b04678 -
dc.identifier.wosid 000438179000039 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Coordination Polymers for High-Capacity Li-Ion Batteries: Metal-Dependent Solid-State Reversibility -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Science & Technology - Other Topics; Materials Science -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor conversion -
dc.subject.keywordAuthor high capacity -
dc.subject.keywordAuthor lithium-ion batteries -
dc.subject.keywordAuthor organic ligand -
dc.subject.keywordAuthor reaction mechanism -
dc.subject.keywordPlus ORGANIC ELECTRODE MATERIALS -
dc.subject.keywordPlus LIGAND REDOX ACTIVITIES -
dc.subject.keywordPlus X-RAY-ABSORPTION -
dc.subject.keywordPlus PROMISING ANODE MATERIAL -
dc.subject.keywordPlus RECHARGEABLE BATTERIES -
dc.subject.keywordPlus NEGATIVE-ELECTRODE -
dc.subject.keywordPlus LITHIUM-STORAGE -
dc.subject.keywordPlus CONVERSION REACTIONS -
dc.subject.keywordPlus RATE CAPABILITY -
dc.subject.keywordPlus ENERGY-STORAGE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.