File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

DingFeng

Ding, Feng
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.startPage 2051 -
dc.citation.title NATURE COMMUNICATIONS -
dc.citation.volume 9 -
dc.contributor.author Sang, Xiahan -
dc.contributor.author Li, Xufan -
dc.contributor.author Zhao, Wen -
dc.contributor.author Dong, Jichen -
dc.contributor.author Rouleau, Christopher M. -
dc.contributor.author Geohegan, David B. -
dc.contributor.author Ding, Feng -
dc.contributor.author Xiao, Kai -
dc.contributor.author Unocic, Raymond R. -
dc.date.accessioned 2023-12-21T20:45:06Z -
dc.date.available 2023-12-21T20:45:06Z -
dc.date.created 2018-06-09 -
dc.date.issued 2018-05 -
dc.description.abstract Exerting synthetic control over the edge structure and chemistry of two-dimensional (2D) materials is of critical importance to direct the magnetic, optical, electrical, and catalytic properties for specific applications. Here, we directly image the edge evolution of pores in Mo1-xWxSe2 monolayers via atomic-resolution in situ scanning transmission electron microscopy (STEM) and demonstrate that these edges can be structurally transformed to theoretically predicted metastable atomic configurations by thermal and chemical driving forces. Density functional theory calculations and ab initio molecular dynamics simulations explain the observed thermally induced structural evolution and exceptional stability of the four most commonly observed edges based on changing chemical potential during thermal annealing. The coupling of modeling and in situ STEM imaging in changing chemical environments demonstrated here provides a pathway for the predictive and controlled atomic scale manipulation of matter for the directed synthesis of edge configurations in Mo-1_xWxSe2 to achieve desired functionality. -
dc.identifier.bibliographicCitation NATURE COMMUNICATIONS, v.9, pp.2051 -
dc.identifier.doi 10.1038/s41467-018-04435-x -
dc.identifier.issn 2041-1723 -
dc.identifier.scopusid 2-s2.0-85047639136 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/24191 -
dc.identifier.url https://www.nature.com/articles/s41467-018-04435-x -
dc.identifier.wosid 000432930700001 -
dc.language 영어 -
dc.publisher NATURE PUBLISHING GROUP -
dc.title In situ edge engineering in two-dimensional transition metal dichalcogenides -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Multidisciplinary Sciences -
dc.relation.journalResearchArea Science & Technology - Other Topics -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus CHEMICAL-VAPOR-DEPOSITION -
dc.subject.keywordPlus CONTROLLED GROWTH -
dc.subject.keywordPlus MAGNETIC-PROPERTIES -
dc.subject.keywordPlus MOS2 TRANSISTORS -
dc.subject.keywordPlus GRAIN-BOUNDARY -
dc.subject.keywordPlus ZIGZAG EDGES -
dc.subject.keywordPlus GRAPHENE -
dc.subject.keywordPlus NANORIBBONS -
dc.subject.keywordPlus MONOLAYERS -
dc.subject.keywordPlus DISULFIDE -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.