BROWSE

Related Researcher

Author's Photo

Lee, Junghye
Data Mining Lab.
Research Interests
  • Data Mining in Healthcare, Chemometrics, Machine Learning, Probabilistic Graphical Models

ITEM VIEW & DOWNLOAD

Privacy-Preserving Patient Similarity Learning in a Federated Environment: Development and Analysis

Cited 0 times inthomson ciCited 0 times inthomson ci
Title
Privacy-Preserving Patient Similarity Learning in a Federated Environment: Development and Analysis
Author
Lee, JunghyeSun, JimengWang, FeiWang, ShuangJun, Chi-HyuckJiang, Xiaoqian
Issue Date
2018-04
Publisher
JMIR Publications
Citation
JMIR MEDICAL INFORMATICS, v.6, no.2, pp.e20
Abstract
Background: There is an urgent need for the development of global analytic frameworks that can perform analyses in a privacy-preserving federated environment across multiple institutions without privacy leakage. A few studies on the topic of federated medical analysis have been conducted recently with the focus on several algorithms. However, none of them have solved similar patient matching, which is useful for applications such as cohort construction for cross-institution observational studies, disease surveillance, and clinical trials recruitment. Objective: The aim of this study was to present a privacy-preserving platform in a federated setting for patient similarity learning across institutions. Without sharing patient-level information, our model can find similar patients from one hospital to another. Methods: We proposed a federated patient hashing framework and developed a novel algorithm to learn context-specific hash codes to represent patients across institutions. The similarities between patients can be efficiently computed using the resulting hash codes of corresponding patients. To avoid security attack from reverse engineering on the model, we applied homomorphic encryption to patient similarity search in a federated setting. Results: We used sequential medical events extracted from the Multiparameter Intelligent Monitoring in Intensive Care-III database to evaluate the proposed algorithm in predicting the incidence of five diseases independently. Our algorithm achieved averaged area under the curves of 0.9154 and 0.8012 with balanced and imbalanced data, respectively, in κ-nearest neighbor with κ=3. We also confirmed privacy preservation in similarity search by using homomorphic encryption. Conclusions: The proposed algorithm can help search similar patients across institutions effectively to support federated data analysis in a privacy-preserving manner.
URI
https://scholarworks.unist.ac.kr/handle/201301/24156
URL
http://medinform.jmir.org/2018/2/e20/
DOI
10.2196/medinform.7744
ISSN
2291-9694
Appears in Collections:
SME_Journal Papers
Files in This Item:
0a6778b57eac919df698016ed3a44c5e.pdf Download

find_unist can give you direct access to the published full text of this article. (UNISTARs only)

Show full item record

qrcode

  • mendeley

    citeulike

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

MENU