File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

백충기

Baig, Chunggi
Theoretical and Computational Study of Polymers & Nanomaterials Lab.
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 3974 -
dc.citation.number 4 -
dc.citation.startPage 3964 -
dc.citation.title ACS NANO -
dc.citation.volume 12 -
dc.contributor.author Ha, Minjeong -
dc.contributor.author Lim, Seongdong -
dc.contributor.author Cho, Soowon -
dc.contributor.author Lee, Youngoh -
dc.contributor.author Na, Sangyun -
dc.contributor.author Baig, Chunggi -
dc.contributor.author Ko, Hyunhyub -
dc.date.accessioned 2023-12-21T20:50:10Z -
dc.date.available 2023-12-21T20:50:10Z -
dc.date.created 2018-05-18 -
dc.date.issued 2018-04 -
dc.description.abstract The gradient stiffness between stiff epidermis and soft dermis with interlocked microridge structures in human skin induces effective stress transmission to underlying mechanoreceptors for enhanced tactile sensing. Inspired by skin structure and function, we fabricate hierarchical nanoporous and interlocked microridge structured polymers with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors (TESs). The skin-inspired hierarchical polymers with gradient elastic modulus enhance the compressibility and contact areal differences due to effective transmission of the external stress from stiff to soft layers, resulting in highly sensitive TESs capable of detecting human vital signs and voice. In addition, the microridges in the interlocked polymers provide an effective variation of gap distance between interlocked layers without using the bulk spacer and thus facilitate the ultrathin and flexible design of TESs that could be worn on the body and detect a variety of pressing, bending, and twisting motions even in humid and underwater environments. Our TESs exhibit the highest power density (46.7 mu W/cm(2)), pressure (0.55 V/kPa), and bending (similar to 0.1 V/degrees) sensitivities ever reported on flexible TESs. The proposed design of hierarchical polymer architectures for the flexible and wearable TESs can find numerous applications in next-generation wearable electronics. -
dc.identifier.bibliographicCitation ACS NANO, v.12, no.4, pp.3964 - 3974 -
dc.identifier.doi 10.1021/acsnano.8b01557 -
dc.identifier.issn 1936-0851 -
dc.identifier.scopusid 2-s2.0-85045904892 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/24127 -
dc.identifier.url https://pubs.acs.org/doi/10.1021/acsnano.8b01557 -
dc.identifier.wosid 000431088200093 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Skin-Inspired Hierarchical Polymer Architectures with Gradient Stiffness for Spacer-Free, Ultrathin, and Highly Sensitive Triboelectric Sensors -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor skin-inspired -
dc.subject.keywordAuthor hierarchical -
dc.subject.keywordAuthor gradient stiffness -
dc.subject.keywordAuthor ultrathin -
dc.subject.keywordAuthor triboelectric sensor -
dc.subject.keywordPlus EPIDERMAL ELECTRONICS -
dc.subject.keywordPlus PRESSURE SENSORS -
dc.subject.keywordPlus ENERGY -
dc.subject.keywordPlus NANOGENERATOR -
dc.subject.keywordPlus BATTERY -
dc.subject.keywordPlus PAPER -
dc.subject.keywordPlus TRANSPARENT -
dc.subject.keywordPlus RECOGNITION -
dc.subject.keywordPlus HUMIDITY -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.