File Download

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 635 -
dc.citation.number 4 -
dc.citation.startPage 627 -
dc.citation.title INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS -
dc.citation.volume 11 -
dc.contributor.author Han, Dongyeop -
dc.contributor.author Kim, Jae Hong -
dc.contributor.author Lee, Jin Hyun -
dc.contributor.author Kang, Su-Tae -
dc.date.accessioned 2023-12-21T21:19:36Z -
dc.date.available 2023-12-21T21:19:36Z -
dc.date.created 2018-01-12 -
dc.date.issued 2017-12 -
dc.description.abstract The aim of this research was to investigate the validity of the Krieger-Dougherty model as a quantitative model to predict the viscosity of mortar depending on various aggregate sizes. The Krieger-Dougherty model reportedly predicted the viscosity of a suspension, which includes cement-based materials. Concrete or mortar incorporates natural resources, such as sand and gravel, referred to as aggregates, which can make up as much as 80% of the mixture by volume. Cement paste is a suspending medium at fresh state and then becomes a binder to link the aggregate after its hydration. Both the viscosity of the suspending medium and the characteristics of the aggregates, therefore, control the viscosity of the cement-based materials. In this research, various sizes and gradations of fine aggregate samples were prepared. Workability and rheological properties were measured using fresh-state mortar samples and incorporating the various-sized fine aggregates. Yield stress and viscosity measurements were obtained by using a rheometer. Based on the packing density of each fine aggregate sample, the viscosity of the mortar was predicted with the Krieger-Dougherty model. In addition, further adjustments were made to determine the water absorption of fine aggregates and was transferred from successful experiment to simulation for more accurate prediction. It was also determined that both yield stress and viscosity increase when the fine aggregate mean size decreases throughout the mix. However, when the mean size of the fine aggregates is bigger than 0.7 mm, the yield stress is not affected by the size of the fine aggregate. Additionally, if aggregate grains get smaller up to 0.3 mm, their water absorption is critical to the rheological behavior. -
dc.identifier.bibliographicCitation INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, v.11, no.4, pp.627 - 635 -
dc.identifier.doi 10.1007/s40069-017-0217-4 -
dc.identifier.issn 1976-0485 -
dc.identifier.scopusid 2-s2.0-85039062572 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/23224 -
dc.identifier.url https://link.springer.com/article/10.1007%2Fs40069-017-0217-4 -
dc.identifier.wosid 000418816200005 -
dc.language 영어 -
dc.publisher KOREA CONCRETE INST -
dc.title Critical Grain Size of Fine Aggregates in the View of the Rheology of Mortar -
dc.type Article -
dc.description.isOpenAccess TRUE -
dc.relation.journalWebOfScienceCategory Construction & Building Technology; Engineering, Civil; Materials Science, Multidisciplinary -
dc.identifier.kciid ART002293403 -
dc.relation.journalResearchArea Construction & Building Technology; Engineering; Materials Science -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.description.journalRegisteredClass kci -
dc.subject.keywordAuthor mortar -
dc.subject.keywordAuthor rheology -
dc.subject.keywordAuthor viscosity -
dc.subject.keywordAuthor fine aggregate -
dc.subject.keywordAuthor grain size -
dc.subject.keywordAuthor Krieger-Dougherty equation -
dc.subject.keywordPlus CONCRETE -
dc.subject.keywordPlus PACKING -
dc.subject.keywordPlus SUSPENSIONS -
dc.subject.keywordPlus VISCOSITY -
dc.subject.keywordPlus PASTES -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.