File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

정후영

Jeong, Hu Young
UCRF Electron Microscopy group
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 13464 -
dc.citation.number 36 -
dc.citation.startPage 13457 -
dc.citation.title NANOSCALE -
dc.citation.volume 9 -
dc.contributor.author Lee, Dae-Sik -
dc.contributor.author Park, Seokhan -
dc.contributor.author Han, Yong Duk -
dc.contributor.author Lee, Jae Eun -
dc.contributor.author Jeong, Hu Young -
dc.contributor.author Yoon, Hyun C. -
dc.contributor.author Jung, Moon Yeon -
dc.contributor.author Kim, Sang Ouk -
dc.contributor.author Choi, Sung-Yool -
dc.date.accessioned 2023-12-21T21:44:39Z -
dc.date.available 2023-12-21T21:44:39Z -
dc.date.created 2017-10-26 -
dc.date.issued 2017-09 -
dc.description.abstract The nanoporous free-standing graphene membrane is of great interest in high performance separation technology. In particular, the separation of biological molecules with similar sizes is one of the key challenges in the purification of biomaterials. Here, we report a reliable, cost-effective, and facile method for the fabrication of a graphene-based nanosieve and its application in the separation of similar-size proteins. A suspended reduced graphene oxide (rGO) nanosieve with ultra-thin, large-area, well-ordered, and dense 15 nm-sized pores was fabricated using block copolymer (BCP) lithography. The fabricated 5 nm-ultrathin nanosieve with an area of 200 mu m x 200 mu m (an ultra-high aspect ratio of similar to 40 000) endured pressure up to 1 atm, and effectively separated hemoglobin (Hb) from a mixture of hemoglobin and immunoglobulin G (IgG), the common proteins in human blood, in a highly selective and rapid manner. The use of the suspended rGO nanosieve is expected to provide a simple and manufacturable platform for practical biomolecule separation offering high selectivity and a large throughput. -
dc.identifier.bibliographicCitation NANOSCALE, v.9, no.36, pp.13457 - 13464 -
dc.identifier.doi 10.1039/c7nr01889d -
dc.identifier.issn 2040-3364 -
dc.identifier.scopusid 2-s2.0-85028380090 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/22875 -
dc.identifier.url http://pubs.rsc.org/en/Content/ArticleLanding/2017/NR/C7NR01889D#!divAbstract -
dc.identifier.wosid 000411613400011 -
dc.language 영어 -
dc.publisher ROYAL SOC CHEMISTRY -
dc.title Selective protein transport through ultra-thin suspended reduced graphene oxide nanopores -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary; Physics, Applied -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science; Physics -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordPlus SOLID-STATE NANOPORES -
dc.subject.keywordPlus SILICON MEMBRANES -
dc.subject.keywordPlus MECHANICAL-PROPERTIES -
dc.subject.keywordPlus ELASTIC PROPERTIES -
dc.subject.keywordPlus CARBON NANOTUBES -
dc.subject.keywordPlus POROUS GRAPHENE -
dc.subject.keywordPlus LARGE-AREA -
dc.subject.keywordPlus FABRICATION -
dc.subject.keywordPlus SEPARATION -
dc.subject.keywordPlus FILTRATION -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.