File Download

There are no files associated with this item.

  • Find it @ UNIST can give you direct access to the published full text of this article. (UNISTARs only)
Related Researcher

박수진

Park, Soojin
Read More

Views & Downloads

Detailed Information

Cited time in webofscience Cited time in scopus
Metadata Downloads

Full metadata record

DC Field Value Language
dc.citation.endPage 4815 -
dc.citation.number 5 -
dc.citation.startPage 4808 -
dc.citation.title ACS NANO -
dc.citation.volume 11 -
dc.contributor.author Yoon, Taeseung -
dc.contributor.author Bok, Taesoo -
dc.contributor.author Kim, Chulhyun -
dc.contributor.author Na, Younghoon -
dc.contributor.author Park, Soojin -
dc.contributor.author Kim, Kwang S. -
dc.date.accessioned 2023-12-21T22:14:21Z -
dc.date.available 2023-12-21T22:14:21Z -
dc.date.created 2017-06-21 -
dc.date.issued 2017-05 -
dc.description.abstract Controlling the morphology of nanostructured silicon is critical to improving the structural stability and electrochemical performance in lithium-ion batteries. The use of removable or sacrificial templates is an effective and easy route to synthesize hollow materials. Herein, we demonstrate the synthesis of mesoporous silicon hollow nanocubes (m-Si HCs) derived from a metal-organic framework (MOF) as an anode material with outstanding electrochemical properties. The m-Si HC architecture with the mesoporous external shell (∼15 nm) and internal void (∼60 nm) can effectively accommodate volume variations and relieve diffusion-induced stress/strain during repeated cycling. In addition, this cube architecture provides a high electrolyte contact area because of the exposed active site, which can promote the transportation of Li ions. The well-designed m-Si HC with carbon coating delivers a high reversible capacity of 1728 mAhg-1 with an initial Coulombic efficiency of 80.1% after the first cycle and an excellent rate capability of >1050 mAhg-1 even at a 15 C-rate. In particular, the m-Si HC anode effectively suppresses electrode swelling to ∼47% after 100 cycles and exhibits outstanding cycle stability of 850 mAhg-1 after 800 cycles at a 1 C-rate. Moreover, a full cell (2.9 mAhcm-2) comprising a m-Si HC-graphite anode and LiCoO2 cathode exhibits remarkable cycle retention of 72% after 100 cycles at a 0.2 C-rate. -
dc.identifier.bibliographicCitation ACS NANO, v.11, no.5, pp.4808 - 4815 -
dc.identifier.doi 10.1021/acsnano.7b01185 -
dc.identifier.issn 1936-0851 -
dc.identifier.scopusid 2-s2.0-85019896995 -
dc.identifier.uri https://scholarworks.unist.ac.kr/handle/201301/22260 -
dc.identifier.url http://pubs.acs.org/doi/abs/10.1021/acsnano.7b01185 -
dc.identifier.wosid 000402498400047 -
dc.language 영어 -
dc.publisher AMER CHEMICAL SOC -
dc.title Mesoporous Silicon Hollow Nanocubes Derived from Metal-Organic Framework Template for Advanced Lithium-Ion Battery Anode -
dc.type Article -
dc.description.isOpenAccess FALSE -
dc.relation.journalWebOfScienceCategory Chemistry, Multidisciplinary; Chemistry, Physical; Nanoscience & Nanotechnology; Materials Science, Multidisciplinary -
dc.relation.journalResearchArea Chemistry; Science & Technology - Other Topics; Materials Science -
dc.description.journalRegisteredClass scie -
dc.description.journalRegisteredClass scopus -
dc.subject.keywordAuthor silicon anode -
dc.subject.keywordAuthor metal-organic framework -
dc.subject.keywordAuthor lithium-ion batteries -
dc.subject.keywordAuthor hollow structure -
dc.subject.keywordAuthor mesoporous structure -
dc.subject.keywordPlus HIGH-PERFORMANCE ANODES -
dc.subject.keywordPlus CARBON COMPOSITE -
dc.subject.keywordPlus ELECTROCHEMICAL PERFORMANCE -
dc.subject.keywordPlus SHELL STRUCTURE -
dc.subject.keywordPlus GRAPHENE OXIDE -
dc.subject.keywordPlus SI -
dc.subject.keywordPlus SURFACE -
dc.subject.keywordPlus LITHIATION -
dc.subject.keywordPlus NANOWIRES -
dc.subject.keywordPlus NANOPARTICLES -

qrcode

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.